Suppr超能文献

一种基于单核苷酸多态性的半自动方法,用于热带饲草双亲多倍体群体中的污染物鉴定。

A Semi-Automated SNP-Based Approach for Contaminant Identification in Biparental Polyploid Populations of Tropical Forage Grasses.

作者信息

Martins Felipe Bitencourt, Moraes Aline Costa Lima, Aono Alexandre Hild, Ferreira Rebecca Caroline Ulbricht, Chiari Lucimara, Simeão Rosangela Maria, Barrios Sanzio Carvalho Lima, Santos Mateus Figueiredo, Jank Liana, do Valle Cacilda Borges, Vigna Bianca Baccili Zanotto, de Souza Anete Pereira

机构信息

Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil.

Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil.

出版信息

Front Plant Sci. 2021 Oct 22;12:737919. doi: 10.3389/fpls.2021.737919. eCollection 2021.

Abstract

Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.

摘要

人工杂交在植物育种计划中起着基础性作用,因为它能产生新的基因型组合,进而可能产生理想的表型。根据物种和繁殖方式的不同,控制杂交可能具有挑战性,并且可能会意外引入受污染的个体。在这种情况下,识别此类污染物对于避免影响进一步的选择周期以及遗传和基因组研究非常重要。这项工作的主要目标是提出一种自动化的多变量方法,用于检测和分类热带饲草双亲多倍体后代中的假定污染物,包括无融合生殖克隆(AC)、自交个体、半同胞(HS)和完全污染物(FC)。我们建立了一个流程,通过整合主成分分析(PCA)、基于孟德尔分离的基因型分析(GA)方法以及聚类分析(CA),来识别以单核苷酸多态性(SNP)标记的等位基因剂量编码的简化基因组测序(GBS)数据中的污染物。这些方法的结合能够正确识别所有模拟后代中的所有污染物,并检测热带饲草三个真实后代中的假定污染物,为识别四倍体和六倍体物种双亲后代中的污染物提供了一种简单且有前景的方法。所提出的流程可通过polyCID Shiny应用程序获取,并且可以轻松地与传统遗传方法(如连锁图谱构建)相结合,从而提高育种计划的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fab8/8569613/d1a215f9e60e/fpls-12-737919-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验