Rubin Erica J, Herrera Carmen M, Crofts Alexander A, Trent M Stephen
Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, USA.
Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA.
Antimicrob Agents Chemother. 2015 Apr;59(4):2051-61. doi: 10.1128/AAC.05052-14. Epub 2015 Jan 20.
In Salmonella enterica, PmrD is a connector protein that links the two-component systems PhoP-PhoQ and PmrA-PmrB. While Escherichia coli encodes a PmrD homolog, it is thought to be incapable of connecting PhoPQ and PmrAB in this organism due to functional divergence from the S. enterica protein. However, our laboratory previously observed that low concentrations of Mg(2+), a PhoPQ-activating signal, leads to the induction of PmrAB-dependent lipid A modifications in wild-type E. coli (C. M. Herrera, J. V. Hankins, and M. S. Trent, Mol Microbiol 76:1444-1460, 2010, http://dx.doi.org/10.1111/j.1365-2958.2010.07150.x). These modifications include phosphoethanolamine (pEtN) and 4-amino-4-deoxy-l-arabinose (l-Ara4N), which promote bacterial resistance to cationic antimicrobial peptides (CAMPs) when affixed to lipid A. Here, we demonstrate that pmrD is required for modification of the lipid A domain of E. coli lipopolysaccharide (LPS) under low-Mg(2+) growth conditions. Further, RNA sequencing shows that E. coli pmrD influences the expression of pmrA and its downstream targets, including genes coding for the modification enzymes that transfer pEtN and l-Ara4N to the lipid A molecule. In line with these findings, a pmrD mutant is dramatically impaired in survival compared with the wild-type strain when exposed to the CAMP polymyxin B. Notably, we also reveal the presence of an unknown factor or system capable of activating pmrD to promote lipid A modification in the absence of the PhoPQ system. These results illuminate a more complex network of protein interactions surrounding activation of PhoPQ and PmrAB in E. coli than previously understood.
在肠炎沙门氏菌中,PmrD是一种连接蛋白,它将双组分系统PhoP - PhoQ和PmrA - PmrB连接起来。虽然大肠杆菌编码一种PmrD同源物,但由于与肠炎沙门氏菌蛋白的功能差异,它被认为无法在该生物体中连接PhoPQ和PmrAB。然而,我们实验室先前观察到,低浓度的Mg(2+)(一种PhoPQ激活信号)会导致野生型大肠杆菌中PmrAB依赖性脂多糖A修饰的诱导(C.M. Herrera、J.V. Hankins和M.S. Trent,《分子微生物学》76:1444 - 1460,2010,http://dx.doi.org/10.1111/j.1365 - 2958.2010.07150.x)。这些修饰包括磷酸乙醇胺(pEtN)和4 - 氨基 - 4 - 脱氧 - L - 阿拉伯糖(L - Ara4N),当它们附着在脂多糖A上时可促进细菌对阳离子抗菌肽(CAMP)的抗性。在此,我们证明在低Mg(2+)生长条件下,pmrD是大肠杆菌脂多糖(LPS)脂多糖A结构域修饰所必需的。此外,RNA测序表明大肠杆菌pmrD会影响pmrA及其下游靶标的表达,包括编码将pEtN和L - Ara4N转移到脂多糖A分子上的修饰酶的基因。与这些发现一致,当暴露于CAMP多粘菌素B时,pmrD突变体与野生型菌株相比,其存活能力显著受损。值得注意的是,我们还揭示了存在一种未知因子或系统,能够在没有PhoPQ系统的情况下激活pmrD以促进脂多糖A修饰。这些结果揭示了大肠杆菌中围绕PhoPQ和PmrAB激活的蛋白质相互作用网络比以前所理解的更为复杂。