Institute of Physics, University of Tartu, W. Ostwaldi Str 1, 50411, Tartu, Estonia; National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia; Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia.
Colloids Surf B Biointerfaces. 2018 Sep 1;169:222-232. doi: 10.1016/j.colsurfb.2018.05.009. Epub 2018 May 4.
Application of efficient antimicrobial surfaces has been estimated to decrease both, the healthcare-associated infections and the spread of antibiotic-resistant bacteria. In this paper, we prepared ZnO and ZnO/Ag nanoparticle covered surfaces and evaluated their antimicrobial efficacy towards a Gram-negative bacterial model (Escherichia coli), a Gram-positive bacterial model (Staphylococcus aureus) and a fungal model (Candida albicans) in the dark and under UVA illumination. The surfaces were prepared by spin coating aliquots of ZnO and ZnO/Ag nanoparticle suspensions onto glass substrates. Surfaces contained 2 or 20 μg Zn/cm and 0-0.02 μg Ag/cm. No significant antimicrobial activity of the surfaces, except of those with the highest Ag or Zn content was observed in the dark. On the other hand, UVA illuminated surfaces containing 20 μg Zn/cm and 2 μg Zn plus 0.02 μg Ag/cm caused >3 log decrease in the viable counts of E. coli and S. aureus in 30 min. As proven by brilliant blue FCF dye degradation and elemental analysis of the surfaces, this remarkable antimicrobial activity was a combined result of photocatalytic effect and release of Zn and Ag ions from surfaces. Surfaces retained significant antibacterial and photocatalytic properties after several usage cycles. Compared to bacteria, yeast C. albicans was significantly less sensitive to the prepared surfaces and only about 1 log reduction of viable count was observed after 60 min UVA illumination. In conclusion, the developed ZnO/Ag surfaces exhibit not only high antibacterial activity but also some antifungal activity.
高效抗菌表面的应用据估计可以降低医疗相关感染和抗生素耐药菌的传播。本文制备了 ZnO 和 ZnO/Ag 纳米颗粒覆盖的表面,并在黑暗中和 UVA 光照下评估了它们对革兰氏阴性细菌模型(大肠杆菌)、革兰氏阳性细菌模型(金黄色葡萄球菌)和真菌模型(白色念珠菌)的抗菌效果。通过将 ZnO 和 ZnO/Ag 纳米颗粒悬浮液的等分试样旋涂到玻璃基底上来制备表面。表面含有 2 或 20μg Zn/cm 和 0-0.02μg Ag/cm。在黑暗中,除了含有最高 Ag 或 Zn 含量的表面外,其他表面均未观察到明显的抗菌活性。另一方面,在 UVA 照射下,含有 20μg Zn/cm 和 2μg Zn 加 0.02μg Ag/cm 的表面在 30 分钟内导致大肠杆菌和金黄色葡萄球菌的活菌数减少了>3 个对数。正如用亮蓝 FCF 染料降解和表面的元素分析所证明的那样,这种显著的抗菌活性是光催化效应和从表面释放 Zn 和 Ag 离子的综合结果。表面在经过多次使用循环后仍保留显著的抗菌和光催化性能。与细菌相比,白色念珠菌对制备的表面明显不敏感,在 UVA 照射 60 分钟后仅观察到活菌数减少约 1 个对数。总之,开发的 ZnO/Ag 表面不仅具有高抗菌活性,而且还具有一定的抗真菌活性。