Suppr超能文献

通过功能磁共振成像(fMRI)大脑活动的主体间相关性和功能连接性来探索观看舞蹈时的集体体验。

Exploring collective experience in watching dance through intersubject correlation and functional connectivity of fMRI brain activity.

作者信息

Pollick Frank E, Vicary Staci, Noble Katie, Kim Naree, Jang Seonhee, Stevens Catherine J

机构信息

School of Psychology, University of Glasgow, Glasgow, United Kingdom.

MARCS Institute for Brain, Behaviour & Development and School of Social Sciences & Psychology, Western Sydney University, Penrith, NSW, Australia; Psychological Sciences, Australian College of Applied Psychology, Sydney, NSW, Australia.

出版信息

Prog Brain Res. 2018;237:373-397. doi: 10.1016/bs.pbr.2018.03.016. Epub 2018 May 3.

Abstract

How the brain contends with naturalistic viewing conditions when it must cope with concurrent streams of diverse sensory inputs and internally generated thoughts is still largely an open question. In this study, we used fMRI to record brain activity while a group of 18 participants watched an edited dance duet accompanied by a soundtrack. After scanning, participants performed a short behavioral task to identify neural correlates of dance segments that could later be recalled. Intersubject correlation (ISC) analysis was used to identify the brain regions correlated among observers, and the results of this ISC map were used to define a set of regions for subsequent analysis of functional connectivity. The resulting network was found to be composed of eight subnetworks and the significance of these subnetworks is discussed. While most subnetworks could be explained by sensory and motor processes, two subnetworks appeared related more to complex cognition. These results inform our understanding of the neural basis of common experience in watching dance and open new directions for the study of complex cognition.

摘要

当大脑必须应对同时出现的各种感官输入流和内部产生的想法时,它如何在自然主义的观看条件下进行处理,这在很大程度上仍然是一个悬而未决的问题。在这项研究中,我们使用功能磁共振成像(fMRI)记录了一组18名参与者观看一段配有音乐的编辑过的双人舞蹈时的大脑活动。扫描后,参与者执行了一项简短的行为任务,以识别稍后能够被回忆起的舞蹈片段的神经关联。使用受试者间相关性(ISC)分析来识别观察者之间相关的脑区,并且该ISC图谱的结果被用于定义一组区域,以便随后进行功能连接分析。结果发现所得到的网络由八个子网组成,并对这些子网的重要性进行了讨论。虽然大多数子网可以通过感觉和运动过程来解释,但有两个子网似乎与复杂认知的关系更大。这些结果有助于我们理解观看舞蹈时共同体验的神经基础,并为复杂认知的研究开辟了新的方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验