Suppr超能文献

使用脑电图(EEG)和功能磁共振成像(fMRI)对镰状细胞病患者的大脑功能活动和连通性进行表征。

Characterization of functional brain activity and connectivity using EEG and fMRI in patients with sickle cell disease.

作者信息

Case Michelle, Zhang Huishi, Mundahl John, Datta Yvonne, Nelson Stephen, Gupta Kalpna, He Bin

机构信息

Department of Biomedical Engineering, University of Minnesota, USA.

Department of Medicine, University of Minnesota, USA.

出版信息

Neuroimage Clin. 2016 Dec 26;14:1-17. doi: 10.1016/j.nicl.2016.12.024. eCollection 2017.

Abstract

Sickle cell disease (SCD) is a red blood cell disorder that causes many complications including life-long pain. Treatment of pain remains challenging due to a poor understanding of the mechanisms and limitations to characterize and quantify pain. In the present study, we examined simultaneously recording functional MRI (fMRI) and electroencephalogram (EEG) to better understand neural connectivity as a consequence of chronic pain in SCD patients. We performed independent component analysis and seed-based connectivity on fMRI data. Spontaneous power and microstate analysis was performed on EEG-fMRI data. ICA analysis showed that patients lacked activity in the default mode network (DMN) and executive control network compared to controls. EEG-fMRI data revealed that the insula cortex's role in salience increases with age in patients. EEG microstate analysis showed patients had increased activity in pain processing regions. The cerebellum in patients showed a stronger connection to the periaqueductal gray matter (involved in pain inhibition), and negative connections to pain processing areas. These results suggest that patients have reduced activity of DMN and increased activity in pain processing regions during rest. The present findings suggest resting state connectivity differences between patients and controls can be used as novel biomarkers of SCD pain.

摘要

镰状细胞病(SCD)是一种红细胞紊乱疾病,会引发包括终身疼痛在内的多种并发症。由于对疼痛的机制以及表征和量化疼痛的局限性了解不足,疼痛治疗仍然具有挑战性。在本研究中,我们同时记录功能磁共振成像(fMRI)和脑电图(EEG),以更好地理解SCD患者慢性疼痛导致的神经连接。我们对fMRI数据进行了独立成分分析和基于种子点的连接性分析。对EEG-fMRI数据进行了自发功率和微状态分析。独立成分分析表明,与对照组相比,患者在默认模式网络(DMN)和执行控制网络中缺乏活动。EEG-fMRI数据显示患者脑岛皮质在突显中的作用随年龄增长而增强。EEG微状态分析表明患者在疼痛处理区域的活动增加。患者的小脑与导水管周围灰质(参与疼痛抑制)的连接更强,与疼痛处理区域的连接为负。这些结果表明患者在休息时默认模式网络的活动减少,疼痛处理区域的活动增加。目前的研究结果表明,患者与对照组之间静息态连接性差异可作为SCD疼痛的新型生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c1f/5226854/cff608ad347b/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验