Neuroscience Institute, New York University, New York, NY 10016, USA.
Neuroscience Institute, New York University, New York, NY 10016, USA; Department of Neurology, New York University, New York, NY 10016, USA; Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
Neuron. 2018 Jun 27;98(6):1229-1242.e5. doi: 10.1016/j.neuron.2018.04.028. Epub 2018 May 17.
The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. VIDEO ABSTRACT.
海马体构建了环境地图。但是,其他大脑区域如何利用这个“认知地图”来指导行为,目前仍不清楚。为了研究海马体中的神经元放电模式如何被传递和转换,我们记录了其主要皮质下目标——侧隔核(LS)中的神经元。我们观察到,LS 神经元在动作电位的相位中携带可靠的空间信息,相对于海马体的 theta 振荡,而 LS 神经元的放电率则没有提供信息。此外,这种空间相位编码在 LS 内具有解剖学的微观结构,并通过同步的伽马频率细胞集合与海马体的空间编码绑定。使用数据驱动的模型,我们表明,通过 CA1 和 CA3 细胞集合的动态加权,可以产生与率无关的空间调谐。我们的发现表明,海马体空间图谱的转换取决于更高阶的 theta 依赖的神经元序列。视频摘要。