Suppr超能文献

海马-外侧隔核回路中空间图谱的转换。

Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.

机构信息

Neuroscience Institute, New York University, New York, NY 10016, USA.

Neuroscience Institute, New York University, New York, NY 10016, USA; Department of Neurology, New York University, New York, NY 10016, USA; Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.

出版信息

Neuron. 2018 Jun 27;98(6):1229-1242.e5. doi: 10.1016/j.neuron.2018.04.028. Epub 2018 May 17.

Abstract

The hippocampus constructs a map of the environment. How this "cognitive map" is utilized by other brain regions to guide behavior remains unexplored. To examine how neuronal firing patterns in the hippocampus are transmitted and transformed, we recorded neurons in its principal subcortical target, the lateral septum (LS). We observed that LS neurons carry reliable spatial information in the phase of action potentials, relative to hippocampal theta oscillations, while the firing rates of LS neurons remained uninformative. Furthermore, this spatial phase code had an anatomical microstructure within the LS and was bound to the hippocampal spatial code by synchronous gamma frequency cell assemblies. Using a data-driven model, we show that rate-independent spatial tuning arises through the dynamic weighting of CA1 and CA3 cell assemblies. Our findings demonstrate that transformation of the hippocampal spatial map depends on higher-order theta-dependent neuronal sequences. VIDEO ABSTRACT.

摘要

海马体构建了环境地图。但是,其他大脑区域如何利用这个“认知地图”来指导行为,目前仍不清楚。为了研究海马体中的神经元放电模式如何被传递和转换,我们记录了其主要皮质下目标——侧隔核(LS)中的神经元。我们观察到,LS 神经元在动作电位的相位中携带可靠的空间信息,相对于海马体的 theta 振荡,而 LS 神经元的放电率则没有提供信息。此外,这种空间相位编码在 LS 内具有解剖学的微观结构,并通过同步的伽马频率细胞集合与海马体的空间编码绑定。使用数据驱动的模型,我们表明,通过 CA1 和 CA3 细胞集合的动态加权,可以产生与率无关的空间调谐。我们的发现表明,海马体空间图谱的转换取决于更高阶的 theta 依赖的神经元序列。视频摘要。

相似文献

1
Transformation of a Spatial Map across the Hippocampal-Lateral Septal Circuit.
Neuron. 2018 Jun 27;98(6):1229-1242.e5. doi: 10.1016/j.neuron.2018.04.028. Epub 2018 May 17.
2
Cooling of Medial Septum Reveals Theta Phase Lag Coordination of Hippocampal Cell Assemblies.
Neuron. 2020 Aug 19;107(4):731-744.e3. doi: 10.1016/j.neuron.2020.05.023. Epub 2020 Jun 10.
3
Spatial coding and physiological properties of hippocampal neurons in the Cornu Ammonis subregions.
Hippocampus. 2016 Dec;26(12):1593-1607. doi: 10.1002/hipo.22659. Epub 2016 Sep 27.
4
GABAergic Medial Septal Neurons with Low-Rhythmic Firing Innervating the Dentate Gyrus and Hippocampal Area CA3.
J Neurosci. 2019 Jun 5;39(23):4527-4549. doi: 10.1523/JNEUROSCI.3024-18.2019. Epub 2019 Mar 29.
5
A distinctive subpopulation of medial septal slow-firing neurons promote hippocampal activation and theta oscillations.
J Neurophysiol. 2011 Nov;106(5):2749-63. doi: 10.1152/jn.00267.2011. Epub 2011 Aug 24.
6
Silencing CA3 disrupts temporal coding in the CA1 ensemble.
Nat Neurosci. 2016 Jul;19(7):945-51. doi: 10.1038/nn.4311. Epub 2016 May 30.
7
Coherent Coding of Spatial Position Mediated by Theta Oscillations in the Hippocampus and Prefrontal Cortex.
J Neurosci. 2019 Jun 5;39(23):4550-4565. doi: 10.1523/JNEUROSCI.0106-19.2019. Epub 2019 Apr 2.
8
Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons.
Hippocampus. 2012 Aug;22(8):1659-80. doi: 10.1002/hipo.22002. Epub 2012 Feb 27.
9
Phase locking of hippocampal CA3 neurons to distal CA1 theta oscillations selectively predicts memory performance.
Cell Rep. 2024 Jun 25;43(6):114276. doi: 10.1016/j.celrep.2024.114276. Epub 2024 May 29.
10
Neuronal code for extended time in the hippocampus.
Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19462-7. doi: 10.1073/pnas.1214107109. Epub 2012 Nov 6.

引用本文的文献

1
Feature-specific threat coding in lateral septum guides defensive action.
Res Sq. 2025 Jun 12:rs.3.rs-6831193. doi: 10.21203/rs.3.rs-6831193/v1.
2
A dorsal subiculum-medial mammillary body pathway for spatial memory.
Mol Psychiatry. 2025 Jun 27. doi: 10.1038/s41380-025-03087-w.
3
The geometry and dimensionality of brain-wide activity.
Elife. 2025 Jun 23;14:RP100666. doi: 10.7554/eLife.100666.
4
Inflammation in Schizophrenia: The Role of Disordered Oscillatory Mechanisms.
Cells. 2025 Apr 29;14(9):650. doi: 10.3390/cells14090650.
5
A Hippocampal-Parietal Network for Reference Frame Coordination.
J Neurosci. 2025 Apr 23;45(17):e1782242025. doi: 10.1523/JNEUROSCI.1782-24.2025.
6
Imaging high-frequency voltage dynamics in multiple neuron classes of behaving mammals.
bioRxiv. 2024 Aug 16:2024.08.15.607428. doi: 10.1101/2024.08.15.607428.
8
NeuroDecodeR: a package for neural decoding in R.
Front Neuroinform. 2024 Jan 3;17:1275903. doi: 10.3389/fninf.2023.1275903. eCollection 2023.
9
Comparative analysis of gonadal hormone receptor expression in the postnatal house mouse, meadow vole, and prairie vole brain.
Horm Behav. 2024 Feb;158:105463. doi: 10.1016/j.yhbeh.2023.105463. Epub 2023 Nov 22.
10

本文引用的文献

1
Is coding a relevant metaphor for the brain?
Behav Brain Sci. 2018 Jul 16;42:e215. doi: 10.1017/S0140525X19000049.
2
Phencyclidine Discoordinates Hippocampal Network Activity But Not Place Fields.
J Neurosci. 2017 Dec 6;37(49):12031-12049. doi: 10.1523/JNEUROSCI.0630-17.2017. Epub 2017 Nov 8.
3
Precise spike timing dynamics of hippocampal place cell activity sensitive to cholinergic disruption.
Hippocampus. 2017 Oct;27(10):1069-1082. doi: 10.1002/hipo.22753. Epub 2017 Jul 17.
4
Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling.
Neuron. 2017 Mar 8;93(5):1213-1226.e5. doi: 10.1016/j.neuron.2017.02.017.
5
A cortical-hippocampal-cortical loop of information processing during memory consolidation.
Nat Neurosci. 2017 Feb;20(2):251-259. doi: 10.1038/nn.4457. Epub 2016 Dec 12.
6
Hippocampal Place Cells Couple to Three Different Gamma Oscillations during Place Field Traversal.
Neuron. 2016 Jul 6;91(1):34-40. doi: 10.1016/j.neuron.2016.05.036.
7
Spike sorting for large, dense electrode arrays.
Nat Neurosci. 2016 Apr;19(4):634-641. doi: 10.1038/nn.4268. Epub 2016 Mar 14.
9
Speed cells in the medial entorhinal cortex.
Nature. 2015 Jul 23;523(7561):419-24. doi: 10.1038/nature14622. Epub 2015 Jul 15.
10
Retrosplenial cortex maps the conjunction of internal and external spaces.
Nat Neurosci. 2015 Aug;18(8):1143-51. doi: 10.1038/nn.4058. Epub 2015 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验