Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305.
Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany.
Proc Natl Acad Sci U S A. 2018 Jun 5;115(23):E5382-E5389. doi: 10.1073/pnas.1803280115. Epub 2018 May 21.
Leucine-rich repeat transmembrane (LRRTM) proteins are synaptic cell adhesion molecules that influence synapse formation and function. They are genetically associated with neuropsychiatric disorders, and via their synaptic actions likely regulate the establishment and function of neural circuits in the mammalian brain. Here, we take advantage of the generation of a and double conditional knockout mouse ( cKO) to examine the role of LRRTM1,2 at mature excitatory synapses in hippocampal CA1 pyramidal neurons. Genetic deletion of in vivo in CA1 neurons using Cre recombinase-expressing lentiviruses dramatically impaired long-term potentiation (LTP), an impairment that was rescued by simultaneous expression of LRRTM2, but not LRRTM4. Mutation or deletion of the intracellular tail of LRRTM2 did not affect its ability to rescue LTP, while point mutations designed to impair its binding to presynaptic neurexins prevented rescue of LTP. In contrast to previous work using shRNA-mediated knockdown of LRRTM1,2, KO of these proteins at mature synapses also caused a decrease in AMPA receptor-mediated, but not NMDA receptor-mediated, synaptic transmission and had no detectable effect on presynaptic function. Imaging of recombinant photoactivatable AMPA receptor subunit GluA1 in the dendritic spines of cultured neurons revealed that it was less stable in the absence of LRRTM1,2. These results illustrate the advantages of conditional genetic deletion experiments for elucidating the function of endogenous synaptic proteins and suggest that LRRTM1,2 proteins help stabilize synaptic AMPA receptors at mature spines during basal synaptic transmission and LTP.
富含亮氨酸重复跨膜 (LRRTM) 蛋白是突触细胞粘附分子,影响突触的形成和功能。它们与神经精神疾病有关,通过其突触作用可能调节哺乳动物大脑中神经回路的建立和功能。在这里,我们利用 和 双重条件性敲除小鼠 (cKO) 来研究 LRRTM1,2 在海马 CA1 锥体神经元成熟兴奋性突触中的作用。使用表达 Cre 重组酶的慢病毒在体内对 CA1 神经元中的 进行基因缺失,显著损害了长时程增强 (LTP),而 LRRTM2 的同时表达挽救了这种损害,但 LRRTM4 则没有。LRRTM2 细胞内尾巴的突变或缺失并不影响其挽救 LTP 的能力,而设计用于损害其与突触前神经素结合的点突变则阻止了 LTP 的挽救。与先前使用 shRNA 介导的 LRRTM1,2 敲低的工作相反,这些蛋白质在成熟突触中的 KO 也导致 AMPA 受体介导的但不是 NMDA 受体介导的突触传递减少,并且对突触前功能没有可检测的影响。在培养神经元的树突棘中对重组光激活型 AMPA 受体亚基 GluA1 的成像显示,在缺乏 LRRTM1,2 的情况下,它的稳定性降低。这些结果说明了条件性基因缺失实验在阐明内源性突触蛋白功能方面的优势,并表明 LRRTM1,2 蛋白有助于在基础突触传递和 LTP 期间稳定成熟棘突中的突触 AMPA 受体。