Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
Molecules. 2018 May 22;23(5):1234. doi: 10.3390/molecules23051234.
The photothermal effect of nanoparticles has proven efficient for driving diverse physical and chemical processes; however, we know of no study addressing the dependence of efficacy on nanoparticle size. Herein, we report on the photothermal effect of three different sizes (5.5 nm, 10 nm and 15 nm in diameter) of magnetite nanoparticles (MNP) driving the decomposition of poly(propylene carbonate) (PPC). We find that the chemical effectiveness of the photothermal effect is positively correlated with particle volume. Numerical simulations of the photothermal heating of PPC supports this observation, showing that larger particles are able to heat larger volumes of PPC for longer periods of time. The increased heating duration is likely due to increased heat capacity, which is why the volume of the particle functions as a ready guide for the photothermal efficacy.
纳米粒子的光热效应已被证明可有效驱动多种物理和化学过程;然而,我们还没有研究纳米粒子尺寸对其功效的影响。在此,我们报告了三种不同尺寸(直径分别为 5.5nm、10nm 和 15nm)的磁铁矿纳米粒子(MNP)的光热效应驱动聚碳酸亚丙酯(PPC)分解的情况。我们发现,光热效应的化学效率与颗粒体积呈正相关。对 PPC 光热加热的数值模拟支持了这一观察结果,表明较大的颗粒能够在更长的时间内加热更大体积的 PPC。加热持续时间的增加可能是由于热容量的增加,这就是为什么颗粒的体积可以作为光热效率的直观指南。