Suppr超能文献

基于配体的药物设计以鉴定 IGF-1R 拮抗剂及氟维司群作为潜在抑制剂的体外验证

Pharmacophore modeling for identification of anti-IGF-1R drugs and in-vitro validation of fulvestrant as a potential inhibitor.

机构信息

Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.

Northern Institute for Cancer Research, Newcastle upon Tyne Hospitals NHS Foundation Trust, The Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.

出版信息

PLoS One. 2018 May 22;13(5):e0196312. doi: 10.1371/journal.pone.0196312. eCollection 2018.

Abstract

Insulin-like growth factor 1 receptor (IGF-1R) is an important therapeutic target for breast cancer treatment. The alteration in the IGF-1R associated signaling network due to various genetic and environmental factors leads the system towards metastasis. The pharmacophore modeling and logical approaches have been applied to analyze the behaviour of complex regulatory network involved in breast cancer. A total of 23 inhibitors were selected to generate ligand based pharmacophore using the tool, Molecular Operating Environment (MOE). The best model consisted of three pharmacophore features: aromatic hydrophobic (HyD/Aro), hydrophobic (HyD) and hydrogen bond acceptor (HBA). This model was validated against World drug bank (WDB) database screening to identify 189 hits with the required pharmacophore features and was further screened by using Lipinski positive compounds. Finally, the most effective drug, fulvestrant, was selected. Fulvestrant is a selective estrogen receptor down regulator (SERD). This inhibitor was further studied by using both in-silico and in-vitro approaches that showed the targeted effect of fulvestrant in ER+ MCF-7 cells. Results suggested that fulvestrant has selective cytotoxic effect and a dose dependent response on IRS-1, IGF-1R, PDZK1 and ER-α in MCF-7 cells. PDZK1 can be an important inhibitory target using fulvestrant because it directly regulates IGF-1R.

摘要

胰岛素样生长因子 1 受体(IGF-1R)是乳腺癌治疗的重要治疗靶点。由于各种遗传和环境因素,IGF-1R 相关信号网络的改变导致系统向转移发展。基于配体的药效团模型和逻辑方法已被应用于分析乳腺癌相关复杂调控网络的行为。使用工具 Molecular Operating Environment(MOE)选择了总共 23 种抑制剂来生成基于配体的药效团模型。最佳模型由三个药效团特征组成:芳香族疏水性(HyD/Aro)、疏水性(HyD)和氢键受体(HBA)。该模型经过世界药物银行(WDB)数据库筛选验证,以鉴定具有所需药效团特征的 189 个命中物,并进一步使用 Lipinski 阳性化合物进行筛选。最后,选择了最有效的药物氟维司群。氟维司群是一种选择性雌激素受体下调剂(SERD)。通过使用计算和体外方法进一步研究了该抑制剂,结果表明氟维司群在 ER+ MCF-7 细胞中具有靶向作用。结果表明,氟维司群对 MCF-7 细胞中的 IRS-1、IGF-1R、PDZK1 和 ER-α 具有选择性细胞毒性作用和剂量依赖性反应。PDZK1 可以成为使用氟维司群的重要抑制靶标,因为它直接调节 IGF-1R。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c07/5963753/25c949f56d2f/pone.0196312.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验