Prabhakar Rajiv Ramanujam, Cui Wei, Tilley S David
University of Zurich Department of Chemistry Y34 H 24 Winterthurerstrasse 190 CH-8057 Zurich.
University of Zurich Department of Chemistry Y34 H 24 Winterthurerstrasse 190 CH-8057 Zurich;, Email:
Chimia (Aarau). 2018 May 30;72(5):333-337. doi: 10.2533/chimia.2018.333.
The solar resource is immense, but the power density of light striking the Earth's surface is relatively dilute, necessitating large area solar conversion devices in order to harvest substantial amounts of power for renewable energy applications. In addition, energy storage is a key challenge for intermittent renewable resources such as solar and wind, which adds significant cost to these energies. As the majority of humanity's present-day energy consumption is based on fuels, an ideal solution is to generate renewable fuels from abundant resources such as sunlight and water. In this account, we detail our recent work towards generating highly efficient and stable Earth-abundant semiconducting materials for solar water splitting to generate renewable hydrogen fuel.
太阳能资源极为丰富,但照射到地球表面的光的功率密度相对较低,这就需要大面积的太阳能转换装置,以便为可再生能源应用获取大量电力。此外,储能是太阳能和风能等间歇性可再生资源面临的关键挑战,这增加了这些能源的成本。由于当今人类的大部分能源消耗基于燃料,理想的解决方案是利用阳光和水等丰富资源生产可再生燃料。在本报告中,我们详细介绍了我们最近在开发高效且稳定的、地球上储量丰富的半导体材料用于太阳能水分解以生产可再生氢燃料方面所做的工作。