Suppr超能文献

人类组织中的转录后调控。

Post-transcriptional regulation across human tissues.

作者信息

Franks Alexander, Airoldi Edoardo, Slavov Nikolai

机构信息

Department of Statistics, University of Washington, Seattle, WA 98195, USA.

Department of Statistics, Harvard University, Cambridge, MA 02138, USA.

出版信息

PLoS Comput Biol. 2017 May 8;13(5):e1005535. doi: 10.1371/journal.pcbi.1005535. eCollection 2017 May.

Abstract

Transcriptional and post-transcriptional regulation shape tissue-type-specific proteomes, but their relative contributions remain contested. Estimates of the factors determining protein levels in human tissues do not distinguish between (i) the factors determining the variability between the abundances of different proteins, i.e., mean-level-variability and, (ii) the factors determining the physiological variability of the same protein across different tissue types, i.e., across-tissues variability. We sought to estimate the contribution of transcript levels to these two orthogonal sources of variability, and found that scaled mRNA levels can account for most of the mean-level-variability but not necessarily for across-tissues variability. The reliable quantification of the latter estimate is limited by substantial measurement noise. However, protein-to-mRNA ratios exhibit substantial across-tissues variability that is functionally concerted and reproducible across different datasets, suggesting extensive post-transcriptional regulation. These results caution against estimating protein fold-changes from mRNA fold-changes between different cell-types, and highlight the contribution of post-transcriptional regulation to shaping tissue-type-specific proteomes.

摘要

转录调控和转录后调控塑造了组织类型特异性蛋白质组,但其相对贡献仍存在争议。对于决定人类组织中蛋白质水平的因素的估计,并未区分:(i)决定不同蛋白质丰度之间变异性的因素,即平均水平变异性;以及(ii)决定同一蛋白质在不同组织类型间生理变异性的因素,即跨组织变异性。我们试图估计转录本水平对这两种正交变异性来源的贡献,发现标准化的mRNA水平可以解释大部分平均水平变异性,但不一定能解释跨组织变异性。后者估计值的可靠量化受到大量测量噪声的限制。然而,蛋白质与mRNA的比率在不同组织间表现出显著的变异性,这种变异性在功能上是协调一致的,并且在不同数据集中具有可重复性,这表明存在广泛的转录后调控。这些结果提醒我们不要根据不同细胞类型之间的mRNA倍数变化来估计蛋白质倍数变化,并强调了转录后调控对塑造组织类型特异性蛋白质组的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e529/5440056/7042fff19744/pcbi.1005535.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验