Suppr超能文献

基于剂量影响矩阵的分段孔径剂量模型的快速直接孔径优化。

Rapid direct aperture optimization via dose influence matrix based piecewise aperture dose model.

机构信息

Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.

School of Biomedical Engineering and Department of Mathematics, Shanghai Jiao Tong University, Shanghai, China.

出版信息

PLoS One. 2018 May 23;13(5):e0197926. doi: 10.1371/journal.pone.0197926. eCollection 2018.

Abstract

In the traditional two-step procedure used in intensity-modulated radiation therapy, fluence map optimization (FMO) is performed first, followed by use of a leaf sequencing algorithm (LSA). By contrast, direct aperture optimization (DAO) directly optimizes aperture leaf positions and weights. However, dose calculation using the Monte Carlo (MC) method for DAO is often time-consuming. Therefore, a rapid DAO (RDAO) algorithm is proposed that uses a dose influence matrix based piecewise aperture dose model (DIM-PADM). In the proposed RDAO algorithm, dose calculation is based on the dose influence matrix instead of MC. The dose dependence of aperture leafs is modeled as a piecewise function using the DIM. The corresponding DIM-PADM-based DAO problem is solved using a simulated annealing algorithm.The proposed algorithm was validated through application to TG119, prostate, liver, and head and neck (H&N) cases from the common optimization for radiation therapy dataset. Compared with the two-step FMO-LSA procedure, the proposed algorithm resulted in more precise dose conformality in all four cases. Specifically, for the H&N dataset, the cost value for the planned target volume (PTV) was decreased by 32%, whereas the cost value for the two organs at risk (OARs) was decreased by 60% and 92%. Our study of the proposed novel DIM-PADM-based RDAO algorithm makes two main contributions: First, we validate the use of the proposed algorithm, in contrast to the FMO-LSA framework, for direct optimization of aperture leaf positions and show that this method results in more precise dose conformality. Second, we demonstrate that compared to MC, the DIM-PADM-based method significantly reduces the computational time required for DAO.

摘要

在调强放射治疗中传统的两步法中,首先进行剂量分布优化(FMO),然后使用叶序列算法(LSA)。相比之下,直接孔径优化(DAO)直接优化孔径叶片位置和权重。然而,使用 MC 方法进行 DAO 的剂量计算通常很耗时。因此,提出了一种快速 DAO(RDAO)算法,该算法使用基于剂量影响矩阵的分段孔径剂量模型(DIM-PADM)。在提出的 RDAO 算法中,剂量计算基于剂量影响矩阵而不是 MC。孔径叶片的剂量依赖性使用 DIM 建模为分段函数。使用模拟退火算法求解基于相应 DIM 的 DAO 问题。通过将 TG119、前列腺、肝脏和头颈部(H&N)病例应用于常见放射治疗数据集的共同优化来验证该算法。与两步 FMO-LSA 过程相比,该算法在所有四个病例中都产生了更精确的剂量适形性。具体来说,对于 H&N 数据集,计划靶区(PTV)的成本值降低了 32%,而两个危及器官(OARs)的成本值降低了 60%和 92%。我们对基于新的 DIM-PADM 的 RDAO 算法的研究做出了两个主要贡献:首先,我们验证了与 FMO-LSA 框架相比,我们提出的算法用于直接优化孔径叶片位置的使用,并表明这种方法产生了更精确的剂量适形性。其次,我们证明与 MC 相比,基于 DIM-PADM 的方法大大减少了 DAO 所需的计算时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1de2/5965891/79efd788e001/pone.0197926.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验