Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH.
Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH.
J Gen Physiol. 2018 Jul 2;150(7):991-1002. doi: 10.1085/jgp.201711909. Epub 2018 May 23.
Recent evidence suggests that neuronal Na channels (nNas) contribute to catecholamine-promoted delayed afterdepolarizations (DADs) and catecholaminergic polymorphic ventricular tachycardia (CPVT). The newly identified overlap between CPVT and long QT (LQT) phenotypes has stoked interest in the cross-talk between aberrant Na and Ca handling and its contribution to early afterdepolarizations (EADs) and DADs. Here, we used Ca imaging and electrophysiology to investigate the role of Na and Ca handling in DADs and EADs in wild-type and cardiac calsequestrin (CASQ2)-null mice. In experiments, repolarization was impaired using 4-aminopyridine (4AP), whereas the L-type Ca and late Na currents were augmented using Bay K 8644 (BayK) and anemone toxin II (ATX-II), respectively. The combination of 4AP and isoproterenol prolonged action potential duration (APD) and promoted aberrant Ca release, EADs, and DADs in wild-type cardiomyocytes. Similarly, BayK in the absence of isoproterenol induced the same effects in CASQ2-null cardiomyocytes. In vivo, it prolonged the QT interval and, upon catecholamine challenge, precipitated wide QRS polymorphic ventricular tachycardia that resembled human torsades de pointes. Treatment with ATX-II produced similar effects at both the cellular level and in vivo. Importantly, nNa inhibition with riluzole or 4,9-anhydro-tetrodotoxin reduced the incidence of ATX-II-, BayK-, or 4AP-induced EADs, DADs, aberrant Ca release, and VT despite only modestly mitigating APD prolongation. These data reveal the contribution of nNas to triggered arrhythmias in murine models of LQT and CPVT-LQT overlap phenotypes. We also demonstrate the antiarrhythmic impact of nNa inhibition, independent of action potential and QT interval duration, and provide a basis for a mechanistically driven antiarrhythmic strategy.
最近的证据表明,神经元钠离子通道(nNas)有助于儿茶酚胺促进的延迟后去极化(DAD)和儿茶酚胺多形性室性心动过速(CPVT)。CPVT 和长 QT(LQT)表型之间新发现的重叠激发了人们对异常钠和钙处理之间的串扰及其对早期后去极化(EAD)和 DAD 的贡献的兴趣。在这里,我们使用钙成像和电生理学来研究钠和钙处理在野生型和心脏肌浆网钙结合蛋白 2(CASQ2)缺失小鼠中的 DAD 和 EAD 中的作用。在实验中,使用 4-氨基吡啶(4AP)来损害复极化,而使用 Bay K 8644(BayK)和海葵毒素 II(ATX-II)分别增强 L 型钙和晚期钠电流。4AP 和异丙肾上腺素的组合延长动作电位持续时间(APD)并促进野生型心肌细胞中的异常钙释放、EAD 和 DAD。同样,在没有异丙肾上腺素的情况下,BayK 在 CASQ2 缺失的心肌细胞中也产生了相同的作用。在体内,它延长了 QT 间期,并且在儿茶酚胺刺激下,引发了类似于人类尖端扭转型室性心动过速的宽 QRS 多形性室性心动过速。ATX-II 的治疗在细胞水平和体内均产生类似的效果。重要的是,用利鲁唑或 4,9-anhydro-tetrodotoxin 抑制 nNa 可降低 ATX-II、BayK 或 4AP 诱导的 EAD、DAD、异常钙释放和 VT 的发生率,尽管仅适度缓解 APD 延长。这些数据揭示了 nNas 对 LQT 和 CPVT-LQT 重叠表型的小鼠模型中触发心律失常的贡献。我们还证明了 nNa 抑制的抗心律失常作用,独立于动作电位和 QT 间期持续时间,并为一种基于机制的抗心律失常策略提供了基础。