Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239.
Vollum Institute, Oregon Health and Science University, Portland, Oregon 97239
J Neurosci. 2018 Jun 27;38(26):5843-5853. doi: 10.1523/JNEUROSCI.1737-17.2018. Epub 2018 May 23.
Mature dentate granule cells in the hippocampus receive input from the entorhinal cortex via the perforant path in precisely arranged lamina, with medial entorhinal axons innervating the middle molecular layer and lateral entorhinal cortex axons innervating the outer molecular layer. Although vastly outnumbered by mature granule cells, adult-generated newborn granule cells play a unique role in hippocampal function, which has largely been attributed to their enhanced excitability and plasticity (Schmidt-Hieber et al., 2004; Ge et al., 2007). Inputs from the medial and lateral entorhinal cortex carry different informational content. Thus, the distribution of inputs onto newly integrated granule cells will affect their function in the circuit. Using retroviral labeling in combination with selective optogenetic activation of medial or lateral entorhinal inputs, we examined the functional innervation and synaptic maturation of newly generated dentate granule cells in the mouse hippocampus. Our results indicate that lateral entorhinal inputs provide the majority of functional innervation of newly integrated granule cells at 21 d postmitosis. Despite preferential functional targeting, the dendritic spine density of immature granule cells was similar in the outer and middle molecular layers, which we speculate could reflect an unequal distribution of shaft synapses. However, chronic blockade of neurotransmitter release of medial entorhinal axons with tetanus toxin disrupted normal synapse development of both medial and lateral entorhinal inputs. Our results support a role for preferential lateral perforant path input onto newly generated neurons in mediating pattern separation, but also indicate that medial perforant path input is necessary for normal synaptic development. The formation of episodic memories involves the integration of contextual and spatial information. Newly integrated neurons in the dentate gyrus of the hippocampus play a critical role in this process, despite constituting only a minor fraction of the total number of granule cells. Here we demonstrate that these neurons preferentially receive information thought to convey the context of an experience. Each newly integrated granule cell plays this unique role for ∼1 month before reaching maturity.
海马体中的成熟颗粒细胞通过穿通通路从内嗅皮层接收输入,输入在精确排列的层中排列,内嗅皮层的内侧轴突支配中间分子层,而外侧内嗅皮层的轴突支配外分子层。尽管成熟的颗粒细胞数量远远超过新生颗粒细胞,但成年产生的新生颗粒细胞在海马体功能中发挥着独特的作用,这主要归因于它们增强的兴奋性和可塑性(Schmidt-Hieber 等人,2004 年;Ge 等人,2007 年)。内嗅皮层的内侧和外侧输入携带不同的信息内容。因此,新整合的颗粒细胞上的输入分布将影响它们在回路中的功能。我们使用逆转录病毒标记结合内侧或外侧内嗅皮层输入的选择性光遗传学激活,研究了新生的齿状回颗粒细胞在小鼠海马体中的功能性神经支配和突触成熟。我们的结果表明,在有丝分裂后 21 天,外侧内嗅皮层的输入提供了新整合的颗粒细胞的大部分功能性神经支配。尽管存在优先的功能靶向,但不成熟颗粒细胞的树突棘密度在外分子层和中间分子层中相似,我们推测这可能反映了轴突突触的不均匀分布。然而,破伤风毒素慢性阻断内侧内嗅皮层轴突的神经递质释放会破坏内侧和外侧内嗅皮层输入的正常突触发育。我们的结果支持优先的外侧穿通通路输入对新生成神经元在模式分离中的作用,但也表明内侧穿通通路输入对于正常的突触发育是必要的。情景记忆的形成涉及上下文和空间信息的整合。海马齿状回中的新整合神经元在这个过程中起着关键作用,尽管它们只构成颗粒细胞总数的一小部分。在这里,我们证明这些神经元优先接收被认为传递体验上下文的信息。每个新整合的颗粒细胞在达到成熟之前都扮演着这个独特的角色,大约持续 1 个月。