Suppr超能文献

防御植物激素信号网络在效应触发免疫过程中实现快速、高强度的转录重编程。

The Defense Phytohormone Signaling Network Enables Rapid, High-Amplitude Transcriptional Reprogramming during Effector-Triggered Immunity.

机构信息

Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany.

Center for Gene Research, Nagoya University, Aichi 464-8602, Japan.

出版信息

Plant Cell. 2018 Jun;30(6):1199-1219. doi: 10.1105/tpc.17.00970. Epub 2018 May 23.

Abstract

The phytohormone network consisting of jasmonate, ethylene, PHYTOALEXIN-DEFICIENT4, and salicylic acid signaling is required for the two modes of plant immunity, pattern-triggered immunity (PTI), and effector-triggered immunity (ETI). A previous study showed that during PTI, the transcriptional responses of over 5000 genes qualitatively depend on complex interactions between the network components. However, the role of the network in transcriptional reprogramming during ETI and whether it differs between PTI and ETI remain elusive. Here, we generated time-series RNA-sequencing data of wild-type and combinatorial mutant plants deficient in components of the network upon challenge with virulent or ETI-triggering avirulent strains of the foliar bacterial pathogen Resistant plants such as the wild type achieved high-amplitude transcriptional reprogramming 4 h after challenge with avirulent strains and sustained this transcriptome response. Strikingly, susceptible plants including the quadruple network mutant showed almost identical transcriptome responses to resistant plants but with several hours delay. Furthermore, gene coexpression network structure was highly conserved between the wild type and quadruple mutant. Thus, in contrast to PTI, the phytohormone network is required only for achieving high-amplitude transcriptional reprogramming within the early time window of ETI against this bacterial pathogen.

摘要

植物激素网络包括茉莉酸、乙烯、PHYTOALEXIN-DEFICIENT4 和水杨酸信号通路,对于植物的两种免疫模式,即模式触发免疫(PTI)和效应物触发免疫(ETI)是必需的。先前的研究表明,在 PTI 过程中,超过 5000 个基因的转录反应定性上取决于网络成分之间的复杂相互作用。然而,该网络在 ETI 过程中的转录重编程中的作用以及它在 PTI 和 ETI 之间是否存在差异仍不清楚。在这里,我们生成了野生型和网络成分组合突变体植物在受到叶部细菌病原体 强毒力或 ETI 触发的无毒力菌株挑战时的时间序列 RNA-seq 数据。抗性植物(如野生型)在受到无毒力菌株挑战后 4 小时实现了高振幅的转录重编程,并维持了这种转录组反应。引人注目的是,包括四重网络突变体在内的敏感植物表现出几乎与抗性植物相同的转录组反应,但有几个小时的延迟。此外,野生型和四重突变体之间的基因共表达网络结构高度保守。因此,与 PTI 不同,植物激素网络仅在针对这种细菌病原体的 ETI 的早期时间窗口内实现高振幅转录重编程是必需的。

相似文献

4
Network properties of robust immunity in plants.植物中稳健免疫的网络特性。
PLoS Genet. 2009 Dec;5(12):e1000772. doi: 10.1371/journal.pgen.1000772. Epub 2009 Dec 11.

引用本文的文献

3
Biomolecular condensates in plant immunity.植物免疫中的生物分子凝聚物
Cell Host Microbe. 2025 Aug 13;33(8):1276-1290. doi: 10.1016/j.chom.2025.06.014.
5
Pattern Recognition Receptors in Plant Immunity.植物免疫中的模式识别受体
Adv Exp Med Biol. 2025;1476:425-451. doi: 10.1007/978-3-031-85340-1_17.
7
A physical model links structure and function in the plant immune system.一个物理模型将植物免疫系统中的结构与功能联系起来。
Proc Natl Acad Sci U S A. 2025 Jun 17;122(24):e2502872122. doi: 10.1073/pnas.2502872122. Epub 2025 Jun 10.

本文引用的文献

7
Organ-specific regulation of growth-defense tradeoffs by plants.植物对生长-防御权衡的器官特异性调控。
Curr Opin Plant Biol. 2016 Feb;29:129-37. doi: 10.1016/j.pbi.2015.12.005. Epub 2016 Jan 21.
10
How Biofilms Evade Host Defenses.生物膜如何逃避宿主防御。
Microbiol Spectr. 2015 Jun;3(3). doi: 10.1128/microbiolspec.MB-0012-2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验