Suppr超能文献

结合项目反应理论与诊断分类模型:一种用于能力量表编制和误解诊断的心理测量模型。

Combining item response theory and diagnostic classification models: a psychometric model for scaling ability and diagnosing misconceptions.

作者信息

Bradshaw Laine, Templin Jonathan

机构信息

Department of Educational Psychology, The University of Georgia, 323 Aderhold Hall, Athens, GA, 30602, USA,

出版信息

Psychometrika. 2014 Jul;79(3):403-25. doi: 10.1007/s11336-013-9350-4. Epub 2013 Aug 2.

Abstract

Traditional testing procedures typically utilize unidimensional item response theory (IRT) models to provide a single, continuous estimate of a student's overall ability. Advances in psychometrics have focused on measuring multiple dimensions of ability to provide more detailed feedback for students, teachers, and other stakeholders. Diagnostic classification models (DCMs) provide multidimensional feedback by using categorical latent variables that represent distinct skills underlying a test that students may or may not have mastered. The Scaling Individuals and Classifying Misconceptions (SICM) model is presented as a combination of a unidimensional IRT model and a DCM where the categorical latent variables represent misconceptions instead of skills. In addition to an estimate of ability along a latent continuum, the SICM model provides multidimensional, diagnostic feedback in the form of statistical estimates of probabilities that students have certain misconceptions. Through an empirical data analysis, we show how this additional feedback can be used by stakeholders to tailor instruction for students' needs. We also provide results from a simulation study that demonstrate that the SICM MCMC estimation algorithm yields reasonably accurate estimates under large-scale testing conditions.

摘要

传统的测试程序通常利用单维项目反应理论(IRT)模型来提供对学生整体能力的单一连续估计。心理测量学的进展集中在测量多维度能力上,以便为学生、教师和其他利益相关者提供更详细的反馈。诊断分类模型(DCM)通过使用分类潜在变量提供多维度反馈,这些潜在变量代表测试背后学生可能掌握或未掌握的不同技能。缩放个体和分类误解(SICM)模型被提出作为单维IRT模型和DCM的组合,其中分类潜在变量代表误解而非技能。除了沿潜在连续体的能力估计外,SICM模型还以学生有特定误解的概率的统计估计形式提供多维度诊断反馈。通过实证数据分析,我们展示了利益相关者如何利用这些额外反馈根据学生需求调整教学。我们还提供了模拟研究的结果,表明SICM马尔可夫链蒙特卡罗(MCMC)估计算法在大规模测试条件下能产生相当准确的估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验