Cho Sun-Joo, Preacher Kristopher J
Vanderbilt University, Nashville, TN, USA.
Educ Psychol Meas. 2016 Oct;76(5):771-786. doi: 10.1177/0013164415612255. Epub 2015 Oct 28.
Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and posttest scores that are most often used in MLM are total scores. In prior research, there have been concerns regarding measurement error in the use of total scores in using MLM. In this article, using ordinary least squares and an attenuation formula, we derive the measurement error correction formula for cluster-level group difference estimates from MLM in the presence of measurement error in the outcome, the covariate, or both. Examples are provided to illustrate the correction formula in cluster randomized and observational studies using between-cluster reliability coefficients recently developed.
多水平建模(MLM)常用于在整群随机试验和观察性研究中检测群组水平的组间差异。通过将协变量(前测分数)作为预测未来属性的未观察因素的代理变量进行控制,来检测结果(后测分数)上的组间差异。MLM中最常使用的前测和后测分数是总分。在先前的研究中,人们一直担心在使用MLM时总分的测量误差。在本文中,我们使用普通最小二乘法和一个衰减公式,推导出在结果、协变量或两者都存在测量误差的情况下,用于MLM中群组水平组间差异估计的测量误差校正公式。通过使用最近开发的组间可靠性系数,给出了在整群随机和观察性研究中说明校正公式的示例。