Institute of Psychology, Humboldt University, Berlin, Germany.
Psychol Methods. 2011 Dec;16(4):444-67. doi: 10.1037/a0024376. Epub 2011 Jul 25.
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data when estimating contextual effects are distinguished: unreliability that is due to measurement error and unreliability that is due to sampling error. The fact that studies may or may not correct for these 2 types of error can be translated into a 2 × 2 taxonomy of multilevel latent contextual models comprising 4 approaches: an uncorrected approach, partial correction approaches correcting for either measurement or sampling error (but not both), and a full correction approach that adjusts for both sources of error. It is shown mathematically and with simulated data that the uncorrected and partial correction approaches can result in substantially biased estimates of contextual effects, depending on the number of L1 individuals per group, the number of groups, the intraclass correlation, the number of indicators, and the size of the factor loadings. However, the simulation study also shows that partial correction approaches can outperform full correction approaches when the data provide only limited information in terms of the L2 construct (i.e., small number of groups, low intraclass correlation). A real-data application from educational psychology is used to illustrate the different approaches.
在多层次建模中,用于评估情境效应的组级变量(L2)通常是通过汇总较低层次(L1)的变量来生成的。社会科学中情境分析的一个主要问题是,对于结构的测量没有无误差的方法。在本文中,当估计情境效应时,区分了在多层次数据中出现的 2 种类型的误差:由于测量误差引起的不可靠性和由于抽样误差引起的不可靠性。研究是否可以纠正这 2 种类型的误差的事实可以转化为多层次潜在情境模型的 2×2 分类法,包括 4 种方法:未校正方法、部分校正方法(仅校正测量或抽样误差,但不两者都校正)和完全校正方法,该方法同时调整了这两个误差源。数学和模拟数据表明,未校正和部分校正方法可能会导致情境效应的估计值存在严重偏差,这取决于每组 L1 个体的数量、组的数量、组内相关系数、指标的数量以及因子负荷的大小。然而,模拟研究还表明,当数据在 L2 结构方面(即,组的数量较少、组内相关系数较低)提供的信息有限时,部分校正方法可能优于完全校正方法。教育心理学中的一个真实数据应用程序被用来举例说明不同的方法。