Suppr超能文献

忽略非参数多级潜在类别模型中嵌套结构水平的影响。

The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models.

作者信息

Park Jungkyu, Yu Hsiu-Ting

机构信息

McGill University, Montreal, Quebec, Canada.

National Chengchi University, Taipei, Taiwan.

出版信息

Educ Psychol Meas. 2016 Oct;76(5):824-847. doi: 10.1177/0013164415618240. Epub 2015 Nov 26.

Abstract

The multilevel latent class model (MLCM) is a multilevel extension of a latent class model (LCM) that is used to analyze nested structure data structure. The nonparametric version of an MLCM assumes a discrete latent variable at a higher-level nesting structure to account for the dependency among observations nested within a higher-level unit. In the present study, a simulation study was conducted to investigate the impact of ignoring the higher-level nesting structure. Three criteria-the model selection accuracy, the classification quality, and the parameter estimation accuracy-were used to evaluate the impact of ignoring the nested data structure. The results of the simulation study showed that ignoring higher-level nesting structure in an MLCM resulted in the poor performance of the Bayesian information criterion to recover the true latent structure, the inaccurate classification of individuals into latent classes, and the inflation of standard errors for parameter estimates, while the parameter estimates were not biased. This article concludes with remarks on ignoring the nested structure in nonparametric MLCMs, as well as recommendations for applied researchers when LCM is used for data collected from a multilevel nested structure.

摘要

多级潜在类别模型(MLCM)是潜在类别模型(LCM)的多级扩展,用于分析嵌套结构数据结构。MLCM的非参数版本假设在较高级别的嵌套结构中有一个离散潜在变量,以解释嵌套在较高级别单元内的观测值之间的依赖性。在本研究中,进行了一项模拟研究,以调查忽略较高级别嵌套结构的影响。使用三个标准——模型选择准确性、分类质量和参数估计准确性——来评估忽略嵌套数据结构的影响。模拟研究结果表明,在MLCM中忽略较高级别嵌套结构会导致贝叶斯信息准则在恢复真实潜在结构方面表现不佳、将个体不准确地分类到潜在类别中以及参数估计的标准误差膨胀,而参数估计没有偏差。本文最后对在非参数MLCM中忽略嵌套结构进行了评论,并为应用研究人员在将LCM用于从多级嵌套结构收集的数据时提供了建议。

相似文献

1
The Impact of Ignoring the Level of Nesting Structure in Nonparametric Multilevel Latent Class Models.
Educ Psychol Meas. 2016 Oct;76(5):824-847. doi: 10.1177/0013164415618240. Epub 2015 Nov 26.
2
Simultaneous Decision on the Number of Latent Clusters and Classes for Multilevel Latent Class Models.
Multivariate Behav Res. 2014 May-Jun;49(3):232-44. doi: 10.1080/00273171.2014.900431.
3
Ignoring a Multilevel Structure in Mixture Item Response Models: Impact on Parameter Recovery and Model Selection.
Appl Psychol Meas. 2018 Mar;42(2):136-154. doi: 10.1177/0146621617711999. Epub 2017 Jun 19.
4
Recommendations on the Sample Sizes for Multilevel Latent Class Models.
Educ Psychol Meas. 2018 Oct;78(5):737-761. doi: 10.1177/0013164417719111. Epub 2017 Jul 9.
6
Polytomous multilevel testlet models for testlet-based assessments with complex sampling designs.
Br J Math Stat Psychol. 2015 Feb;68(1):65-83. doi: 10.1111/bmsp.12035. Epub 2014 Feb 27.
7
Multilevel Modeling of Cognitive Diagnostic Assessment: The Multilevel DINA Example.
Appl Psychol Meas. 2019 Jan;43(1):34-50. doi: 10.1177/0146621618765713. Epub 2018 Apr 3.
8
Bayesian Multilevel Latent Class Models for the Multiple Imputation of Nested Categorical Data.
J Educ Behav Stat. 2018 Oct;43(5):511-539. doi: 10.3102/1076998618769871. Epub 2018 Apr 30.

引用本文的文献

1
Class Enumeration in Mixture Modeling with Nested Data: A Brief Report.
J Exp Educ. 2024 Aug 9. doi: 10.1080/00220973.2024.2386983.
2
Physical activity across days of week, video games, and laptop use are more likely to influence weight gain among Saudi Youth.
Front Sports Act Living. 2022 Aug 30;4:963144. doi: 10.3389/fspor.2022.963144. eCollection 2022.
3
Identifying Student Subgroups as a Function of School Level Attributes: A Multilevel Latent Class Analysis.
Front Psychol. 2021 Feb 26;12:624221. doi: 10.3389/fpsyg.2021.624221. eCollection 2021.
4
Ignoring a Multilevel Structure in Mixture Item Response Models: Impact on Parameter Recovery and Model Selection.
Appl Psychol Meas. 2018 Mar;42(2):136-154. doi: 10.1177/0146621617711999. Epub 2017 Jun 19.

本文引用的文献

1
Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood?
Multivariate Behav Res. 2006 Dec 1;41(4):499-532. doi: 10.1207/s15327906mbr4104_4.
2
The Consequence of Ignoring a Level of Nesting in Multilevel Analysis: A Comment.
Multivariate Behav Res. 2005 Oct 1;40(4):423-34. doi: 10.1207/s15327906mbr4004_2.
3
Goodness-of-Fit Testing for Latent Class Models.
Multivariate Behav Res. 1993 Jul 1;28(3):375-89. doi: 10.1207/s15327906mbr2803_4.
4
Abstract: Measurement and Structural Model Class Separation in Mixture-CFA.
Multivariate Behav Res. 2010 Nov 30;45(6):1023. doi: 10.1080/00273171.2010.534376.
5
The Consequence of Ignoring a Level of Nesting in Multilevel Analysis.
Multivariate Behav Res. 2004 Jan 1;39(1):129-49. doi: 10.1207/s15327906mbr3901_5.
6
Simultaneous Decision on the Number of Latent Clusters and Classes for Multilevel Latent Class Models.
Multivariate Behav Res. 2014 May-Jun;49(3):232-44. doi: 10.1080/00273171.2014.900431.
7
Multilevel Mixture Factor Models.
Multivariate Behav Res. 2012 Mar 30;47(2):247-75. doi: 10.1080/00273171.2012.658337.
8
University and student segmentation: multilevel latent-class analysis of students' attitudes towards research methods and statistics.
Br J Educ Psychol. 2013 Jun;83(Pt 2):280-304. doi: 10.1111/j.2044-8279.2011.02062.x. Epub 2012 Jan 3.
9
The impact of ignoring multiple membership data structures in multilevel models.
Br J Math Stat Psychol. 2012 May;65(2):185-200. doi: 10.1111/j.2044-8317.2011.02023.x. Epub 2011 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验