Suppr超能文献

在具有非正态误差的增长混合模型中提取虚假潜在类别

Extracting Spurious Latent Classes in Growth Mixture Modeling With Nonnormal Errors.

作者信息

Guerra-Peña Kiero, Steinley Douglas

机构信息

Pontificia Universidad Católica Madre y Maestra, Santiago, Dominican Republic.

University of Missouri-Columbia, MO, USA.

出版信息

Educ Psychol Meas. 2016 Dec;76(6):933-953. doi: 10.1177/0013164416633735. Epub 2016 Mar 1.

Abstract

Growth mixture modeling is generally used for two purposes: (1) to identify mixtures of normal subgroups and (2) to approximate oddly shaped distributions by a mixture of normal components. Often in applied research this methodology is applied to both of these situations indistinctly: using the same fit statistics and likelihood ratio tests. This can lead to the overextraction of latent classes and the attribution of substantive meaning to these spurious classes. The goals of this study are (1) to explore the performance of the Bayesian information criterion, sample-adjusted BIC, and bootstrap likelihood ratio test in growth mixture modeling analysis with nonnormal distributed outcome variables and (2) to examine the effects of nonnormal time invariant covariates in the estimation of the number of latent classes when outcome variables are normally distributed. For both of these goals, we will include nonnormal conditions not considered previously in the literature. Two simulation studies were conducted. Results show that spurious classes may be selected and optimal solutions obtained in the data analysis when the population departs from normality even when the nonnormality is only present in time invariant covariates.

摘要

增长混合模型通常用于两个目的

(1)识别正态子组的混合;(2)通过正态成分的混合来近似形状奇特的分布。在应用研究中,这种方法常常被不加区分地应用于这两种情况:使用相同的拟合统计量和似然比检验。这可能导致潜在类别的过度提取以及将实质性意义赋予这些虚假类别。本研究的目标是:(1)在具有非正态分布结果变量的增长混合模型分析中,探索贝叶斯信息准则、样本调整后的贝叶斯信息准则和自助似然比检验的性能;(2)当结果变量呈正态分布时,检验非正态时间不变协变量对潜在类别数量估计的影响。对于这两个目标,我们将纳入文献中先前未考虑的非正态条件。进行了两项模拟研究。结果表明,即使总体偏离正态性,且非正态性仅存在于时间不变协变量中,在数据分析中仍可能选择虚假类别并获得最优解。

相似文献

1
Extracting Spurious Latent Classes in Growth Mixture Modeling With Nonnormal Errors.
Educ Psychol Meas. 2016 Dec;76(6):933-953. doi: 10.1177/0013164416633735. Epub 2016 Mar 1.
3
Implementing continuous non-normal skewed distributions in latent growth mixture modeling: An assessment of specification errors and class enumeration.
Multivariate Behav Res. 2019 Nov-Dec;54(6):795-821. doi: 10.1080/00273171.2019.1593813. Epub 2019 Apr 23.
4
Performance of growth mixture models in the presence of time-varying covariates.
Behav Res Methods. 2017 Oct;49(5):1951-1965. doi: 10.3758/s13428-016-0823-0.
5
The Impact of Non-Normality on Extraction of Spurious Latent Classes in Mixture IRT Models.
Appl Psychol Meas. 2016 Mar;40(2):98-113. doi: 10.1177/0146621615605080. Epub 2015 Sep 22.
7
Growth Mixture Modeling With Nonnormal Distributions: Implications for Data Transformation.
Educ Psychol Meas. 2021 Aug;81(4):698-727. doi: 10.1177/0013164420976773. Epub 2020 Dec 8.
9
An Evaluation of Fit Indices Used in Model Selection of Dichotomous Mixture IRT Models.
Educ Psychol Meas. 2024 Jun;84(3):481-509. doi: 10.1177/00131644231180529. Epub 2023 Jun 26.
10
A Comparison of Different Nonnormal Distributions in Growth Mixture Models.
Educ Psychol Meas. 2019 Jun;79(3):577-597. doi: 10.1177/0013164418823865. Epub 2019 Jan 24.

引用本文的文献

1
Families following pediatric traumatic medical events: identifying psychosocial risk profiles using latent profile analysis.
Eur J Psychotraumatol. 2022 Sep 21;13(2):2116825. doi: 10.1080/20008066.2022.2116825. eCollection 2022.
2
Smoking across adolescence and adulthood with cardiovascular risk among American Indian peoples.
Health Psychol. 2022 Dec;41(12):912-922. doi: 10.1037/hea0001227. Epub 2022 Sep 1.
3
Growth Mixture Modeling With Nonnormal Distributions: Implications for Data Transformation.
Educ Psychol Meas. 2021 Aug;81(4):698-727. doi: 10.1177/0013164420976773. Epub 2020 Dec 8.
4
Testing a Socioecological Model of Relapse and Recovery from Alcohol Problems.
Subst Abuse. 2020 Oct 26;14:1178221820933631. doi: 10.1177/1178221820933631. eCollection 2020.
5
Class enumeration false positive in skew-t family of continuous growth mixture models.
PLoS One. 2020 Apr 17;15(4):e0231525. doi: 10.1371/journal.pone.0231525. eCollection 2020.
7
A Comparison of Different Nonnormal Distributions in Growth Mixture Models.
Educ Psychol Meas. 2019 Jun;79(3):577-597. doi: 10.1177/0013164418823865. Epub 2019 Jan 24.

本文引用的文献

1
The problem of model selection uncertainty in structural equation modeling.
Psychol Methods. 2012 Mar;17(1):1-14. doi: 10.1037/a0026804. Epub 2012 Jan 23.
2
Alcohol use trajectories and the ubiquitous cat's cradle: cause for concern?
J Abnorm Psychol. 2011 May;120(2):322-35. doi: 10.1037/a0021813.
3
Trajectories of change in depression severity during treatment with antidepressants.
Psychol Med. 2010 Aug;40(8):1367-77. doi: 10.1017/S0033291709991528. Epub 2009 Oct 29.
4
Local solutions in the estimation of growth mixture models.
Psychol Methods. 2006 Mar;11(1):36-53. doi: 10.1037/1082-989X.11.1.36.
6
Statistical and substantive checking in growth mixture modeling: comment on Bauer and Curran (2003).
Psychol Methods. 2003 Sep;8(3):369-77; discussion 384-93. doi: 10.1037/1082-989X.8.3.369.
7
Mixture or homogeneous? Comment on Bauer and Curran (2003).
Psychol Methods. 2003 Sep;8(3):364-8; discussion 384-93. doi: 10.1037/1082-989X.8.3.364.
9
Finite mixture modeling with mixture outcomes using the EM algorithm.
Biometrics. 1999 Jun;55(2):463-9. doi: 10.1111/j.0006-341x.1999.00463.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验