Galatzer-Levy I R, Ma S, Statnikov A, Yehuda R, Shalev A Y
Department of Psychiatry, New York University School of Medicine, New York, NY, USA.
Steven and Alexandra Cohen Center for the Study of Post-Traumatic Stress and Traumatic Brain Injury, New York, NY, USA.
Transl Psychiatry. 2017 Mar 21;7(3):e0. doi: 10.1038/tp.2017.38.
To date, studies of biological risk factors have revealed inconsistent relationships with subsequent post-traumatic stress disorder (PTSD). The inconsistent signal may reflect the use of data analytic tools that are ill equipped for modeling the complex interactions between biological and environmental factors that underlay post-traumatic psychopathology. Further, using symptom-based diagnostic status as the group outcome overlooks the inherent heterogeneity of PTSD, potentially contributing to failures to replicate. To examine the potential yield of novel analytic tools, we reanalyzed data from a large longitudinal study of individuals identified following trauma in the general emergency room (ER) that failed to find a linear association between cortisol response to traumatic events and subsequent PTSD. First, latent growth mixture modeling empirically identified trajectories of post-traumatic symptoms, which then were used as the study outcome. Next, support vector machines with feature selection identified sets of features with stable predictive accuracy and built robust classifiers of trajectory membership (area under the receiver operator characteristic curve (AUC)=0.82 (95% confidence interval (CI)=0.80-0.85)) that combined clinical, neuroendocrine, psychophysiological and demographic information. Finally, graph induction algorithms revealed a unique path from childhood trauma via lower cortisol during ER admission, to non-remitting PTSD. Traditional general linear modeling methods then confirmed the newly revealed association, thereby delineating a specific target population for early endocrine interventions. Advanced computational approaches offer innovative ways for uncovering clinically significant, non-shared biological signals in heterogeneous samples.
迄今为止,对生物危险因素的研究表明,其与后续创伤后应激障碍(PTSD)之间的关系并不一致。这种不一致的信号可能反映出所使用的数据分析工具不足以对构成创伤后精神病理学基础的生物因素和环境因素之间的复杂相互作用进行建模。此外,将基于症状的诊断状态作为分组结果,忽略了PTSD固有的异质性,这可能导致重复研究失败。为了检验新型分析工具的潜在效用,我们重新分析了一项大型纵向研究的数据,该研究针对在普通急诊室(ER)经历创伤的个体进行,此前该研究未能发现创伤事件的皮质醇反应与后续PTSD之间存在线性关联。首先,潜在增长混合模型通过实证确定了创伤后症状的轨迹,然后将其用作研究结果。接下来,带有特征选择的支持向量机识别出具有稳定预测准确性的特征集,并构建了强大的轨迹归属分类器(受试者操作特征曲线下面积(AUC)=0.82(95%置信区间(CI)=0.80 - 0.85)),该分类器结合了临床、神经内分泌、心理生理和人口统计学信息。最后,图归纳算法揭示了一条独特的路径,即从童年创伤经由急诊入院时较低的皮质醇水平,到持续性PTSD。传统的一般线性建模方法随后证实了新发现的关联,从而确定了早期内分泌干预的特定目标人群。先进的计算方法为在异质样本中揭示具有临床意义的、非共享的生物信号提供了创新途径。