Nam Yeji, Hong Sehee
Korea University, Seongbuk-gu, Seoul, Republic of Korea.
Educ Psychol Meas. 2021 Aug;81(4):698-727. doi: 10.1177/0013164420976773. Epub 2020 Dec 8.
This study investigated the extent to which class-specific parameter estimates are biased by the within-class normality assumption in nonnormal growth mixture modeling (GMM). Monte Carlo simulations for nonnormal GMM were conducted to analyze and compare two strategies for obtaining unbiased parameter estimates: relaxing the within-class normality assumption and using data transformation on repeated measures. Based on unconditional GMM with two latent trajectories, data were generated under different sample sizes (300, 800, and 1500), skewness (0.7, 1.2, and 1.6) and kurtosis (2 and 4) of outcomes, numbers of time points (4 and 8), and class proportions (0.5:0.5 and 0.25:0.75). Of the four distributions, it was found that skew- GMM had the highest accuracy in terms of parameter estimation. In GMM based on data transformations, the adjusted logarithmic method was more effective in obtaining unbiased parameter estimates than the use of van der Waerden quantile normal scores. Even though adjusted logarithmic transformation in nonnormal GMM reduced computation time, skew- GMM produced much more accurate estimation and was more robust over a range of simulation conditions. This study is significant in that it considers different levels of kurtosis and class proportions, which has not been investigated in depth in previous studies. The present study is also meaningful in that investigated the applicability of data transformation to nonnormal GMM.
本研究调查了在非正态增长混合模型(GMM)中,特定类别参数估计受类别内正态性假设偏差影响的程度。进行了非正态GMM的蒙特卡罗模拟,以分析和比较获得无偏参数估计的两种策略:放宽类别内正态性假设以及对重复测量数据进行变换。基于具有两条潜在轨迹的无条件GMM,在不同样本量(300、800和1500)、结果的偏度(0.7、1.2和1.6)、峰度(2和4)、时间点数(4和8)以及类别比例(0.5:0.5和0.25:0.75)的情况下生成数据。在这四种分布中,发现偏斜GMM在参数估计方面具有最高的准确性。在基于数据变换的GMM中,调整对数法在获得无偏参数估计方面比使用范德瓦尔登分位数正态得分更有效。尽管非正态GMM中的调整对数变换减少了计算时间,但偏斜GMM产生的估计更为准确,并且在一系列模拟条件下更稳健。本研究的意义在于它考虑了不同水平的峰度和类别比例,而此前的研究尚未对此进行深入探讨。本研究还有意义之处在于它调查了数据变换在非正态GMM中的适用性。