Suppr超能文献

具有非正态分布的生长混合模型:对数据转换的影响

Growth Mixture Modeling With Nonnormal Distributions: Implications for Data Transformation.

作者信息

Nam Yeji, Hong Sehee

机构信息

Korea University, Seongbuk-gu, Seoul, Republic of Korea.

出版信息

Educ Psychol Meas. 2021 Aug;81(4):698-727. doi: 10.1177/0013164420976773. Epub 2020 Dec 8.

Abstract

This study investigated the extent to which class-specific parameter estimates are biased by the within-class normality assumption in nonnormal growth mixture modeling (GMM). Monte Carlo simulations for nonnormal GMM were conducted to analyze and compare two strategies for obtaining unbiased parameter estimates: relaxing the within-class normality assumption and using data transformation on repeated measures. Based on unconditional GMM with two latent trajectories, data were generated under different sample sizes (300, 800, and 1500), skewness (0.7, 1.2, and 1.6) and kurtosis (2 and 4) of outcomes, numbers of time points (4 and 8), and class proportions (0.5:0.5 and 0.25:0.75). Of the four distributions, it was found that skew- GMM had the highest accuracy in terms of parameter estimation. In GMM based on data transformations, the adjusted logarithmic method was more effective in obtaining unbiased parameter estimates than the use of van der Waerden quantile normal scores. Even though adjusted logarithmic transformation in nonnormal GMM reduced computation time, skew- GMM produced much more accurate estimation and was more robust over a range of simulation conditions. This study is significant in that it considers different levels of kurtosis and class proportions, which has not been investigated in depth in previous studies. The present study is also meaningful in that investigated the applicability of data transformation to nonnormal GMM.

摘要

本研究调查了在非正态增长混合模型(GMM)中,特定类别参数估计受类别内正态性假设偏差影响的程度。进行了非正态GMM的蒙特卡罗模拟,以分析和比较获得无偏参数估计的两种策略:放宽类别内正态性假设以及对重复测量数据进行变换。基于具有两条潜在轨迹的无条件GMM,在不同样本量(300、800和1500)、结果的偏度(0.7、1.2和1.6)、峰度(2和4)、时间点数(4和8)以及类别比例(0.5:0.5和0.25:0.75)的情况下生成数据。在这四种分布中,发现偏斜GMM在参数估计方面具有最高的准确性。在基于数据变换的GMM中,调整对数法在获得无偏参数估计方面比使用范德瓦尔登分位数正态得分更有效。尽管非正态GMM中的调整对数变换减少了计算时间,但偏斜GMM产生的估计更为准确,并且在一系列模拟条件下更稳健。本研究的意义在于它考虑了不同水平的峰度和类别比例,而此前的研究尚未对此进行深入探讨。本研究还有意义之处在于它调查了数据变换在非正态GMM中的适用性。

相似文献

2
A Comparison of Different Nonnormal Distributions in Growth Mixture Models.生长混合模型中不同非正态分布的比较
Educ Psychol Meas. 2019 Jun;79(3):577-597. doi: 10.1177/0013164418823865. Epub 2019 Jan 24.
4
A Monte Carlo evaluation of growth mixture modeling.基于蒙特卡罗模拟的增长混合模型评估。
Dev Psychopathol. 2022 Oct;34(4):1604-1617. doi: 10.1017/S0954579420002230. Epub 2021 Mar 15.

本文引用的文献

1
A Comparison of Different Nonnormal Distributions in Growth Mixture Models.生长混合模型中不同非正态分布的比较
Educ Psychol Meas. 2019 Jun;79(3):577-597. doi: 10.1177/0013164418823865. Epub 2019 Jan 24.
6
A Heterogeneous Growth Curve Model for Nonnormal Data.一种针对非正态数据的异质增长曲线模型。
Multivariate Behav Res. 2015;50(4):416-35. doi: 10.1080/00273171.2015.1022639.
7
Growth mixture modeling with non-normal distributions.具有非正态分布的增长混合模型
Stat Med. 2015 Mar 15;34(6):1041-58. doi: 10.1002/sim.6388. Epub 2014 Dec 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验