INSTM-UdR Brescia, via Branze 38, 2513 Brescia, Italy.
Phys Chem Chem Phys. 2018 Jun 6;20(22):15307-15315. doi: 10.1039/c8cp01919c.
Light-to-heat conversion in non-plasmonic, high refractive index nanoantennas is a key topic for many applications, including Raman sensing, laser writing, nanofabrication and photo-thermal therapy. However, heat generation and propagation in non-plasmonic antennas is increasingly debated and contradictory results have been reported so far. Here we report a finite element analysis of the steady-state temperature distribution and heat flow in SiO2/Si core/shell systems (silicon nanoshells) irradiated with different continuous wave lasers (λ = 532, 633 and 785 nm), under real working conditions. The complex interplay among the optical properties, morphology, degree of crystallinity of the nanoshells, thickness dependence of thermal conductivity and interactions with the substrate has been elucidated. This study reveals that all of these parameters can be appropriately combined for obtaining either stable nanoshells for Raman sensing or highly efficient sources of local heating. The optimal balance between thermal stability and field enhancement was found for crystalline Si shell layers with thicknesses ranging from 40 to 60 nm, irradiated by a NIR laser source. On the other hand, non-conformal amorphous or crystalline shell layers with a thickness >50 nm can reach a very high local temperature (above 1000 K) when irradiated with a low power density (less than 1 mW μm-2) laser sources. This work provides a general approach for an extensive investigation of the opto-thermal properties of high-index nanoantennas.
非等离子体、高折射率纳米天线的光热转换是许多应用的关键主题,包括拉曼传感、激光写入、纳米制造和光热治疗。然而,迄今为止,非等离子体天线中的热产生和传播问题备受争议,且已有相互矛盾的结果报道。在这里,我们报告了在实际工作条件下,用不同连续波激光(λ=532、633 和 785nm)照射的 SiO2/Si 核/壳系统(硅纳米壳)中稳态温度分布和热流的有限元分析。阐明了光学性质、形态、纳米壳的结晶度、热导率的厚度依赖性以及与衬底的相互作用之间的复杂相互作用。这项研究表明,所有这些参数都可以适当组合,以获得用于拉曼传感的稳定纳米壳或用于局部加热的高效源。对于厚度在 40 至 60nm 之间的结晶硅壳层,在近红外激光源照射下,发现了热稳定性和场增强之间的最佳平衡。另一方面,当用低功率密度(小于 1mW μm-2)激光源照射时,非共形非晶或结晶壳层厚度大于 50nm 时,可以达到非常高的局部温度(高于 1000K)。这项工作为高折射率纳米天线的光热特性的广泛研究提供了一种通用方法。