Suppr超能文献

自发性高血压大鼠和 Wistar 大鼠椎动脉自主神经支配的差异。

Differences in autonomic innervation to the vertebrobasilar arteries in spontaneously hypertensive and Wistar rats.

机构信息

School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol BS8 1TD, UK.

Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.

出版信息

J Physiol. 2018 Aug;596(16):3505-3529. doi: 10.1113/JP275973. Epub 2018 Jul 19.

Abstract

KEY POINTS

Essential hypertension is associated with hyperactivity of the sympathetic nervous system and hypoperfusion of the brainstem area controlling arterial pressure. Sympathetic and parasympathetic innervation of vertebrobasilar arteries may regulate blood perfusion to the brainstem. We examined the autonomic innervation of these arteries in pre-hypertensive (PHSH) and hypertensive spontaneously hypertensive (SH) rats relative to age-matched Wistar rats. Our main findings were: (1) an unexpected decrease in noradrenergic sympathetic innervation in PHSH and SH compared to Wistar rats despite elevated sympathetic drive in PHSH rats; (2) a dramatic deficit in cholinergic and peptidergic parasympathetic innervation in PHSH and SH compared to Wistar rats; and (3) denervation of sympathetic fibres did not alter vertebrobasilar artery morphology or arterial pressure. Our results support a compromised vasodilatory capacity in PHSH and SH rats compared to Wistar rats, which may explain their hypoperfused brainstem.

ABSTRACT

Neurogenic hypertension may result from brainstem hypoperfusion. We previously found remodelling (decreased lumen, increased wall thickness) in vertebrobasilar arteries of juvenile, pre-hypertensive spontaneously hypertensive (PHSH) and adult spontaneously hypertensive (SH) rats compared to age-matched normotensive rats. We tested the hypothesis that there would be a greater density of sympathetic to parasympathetic innervation of vertebrobasilar arteries in SH versus Wistar rats irrespective of the stage of development and that sympathetic denervation (ablation of the superior cervical ganglia bilaterally) would reverse the remodelling and lower blood pressure. Contrary to our hypothesis, immunohistochemistry revealed a decrease in the innervation density of noradrenergic sympathetic fibres in adult SH rats (P < 0.01) compared to Wistar rats. Unexpectedly, there was a 65% deficit in parasympathetic fibres, as assessed by both vesicular acetylcholine transporter (α-VAChT) and vasoactive intestinal peptide (α-VIP) immunofluorescence (P < 0.002) in PHSH rats compared to age-matched Wistar rats. Although the neural activity of the internal cervical sympathetic branch, which innervates the vertebrobasilar arteries, was higher in PHSH relative to Wistar rats, its denervation had no effect on the vertebrobasilar artery morphology or persistent effect on arterial pressure in SH rats. Our neuroanatomic and functional data do not support a role for sympathetic nerves in remodelling of the vertebrobasilar artery wall in PHSH or SH rats. The remodelling of vertebrobasilar arteries and the elevated activity in the internal cervical sympathetic nerve coupled with their reduced parasympathetic innervation suggests a compromised vasodilatory capacity in PHSH and SH rats that could explain their brainstem hypoperfusion.

摘要

要点

原发性高血压与交感神经系统的过度活跃和控制动脉压的脑干部位灌注不足有关。椎基底动脉的交感和副交感神经支配可能调节脑干的血液灌注。我们研究了与年龄匹配的 Wistar 大鼠相比,在预高血压(PHSH)和高血压自发性高血压(SH)大鼠中这些动脉的自主神经支配。我们的主要发现是:(1)尽管 PHSH 大鼠的交感神经驱动升高,但与 Wistar 大鼠相比,去甲肾上腺素能交感神经支配出人意料地降低;(2)与 Wistar 大鼠相比,PHSH 和 SH 大鼠的胆碱能和肽能副交感神经支配明显不足;(3)交感神经纤维的去神经支配不会改变椎基底动脉的形态或动脉压。我们的结果支持 PHSH 和 SH 大鼠与 Wistar 大鼠相比,血管舒张能力受损,这可能解释了它们的脑干灌注不足。

摘要

神经源性高血压可能源于脑干部位灌注不足。我们之前发现,与年龄匹配的正常血压大鼠相比,幼年、预高血压自发性高血压(PHSH)和成年自发性高血压(SH)大鼠的椎基底动脉发生了重塑(管腔减小,管壁增厚)。我们假设,SH 大鼠的椎基底动脉交感神经对副交感神经的支配密度会大于 Wistar 大鼠,而与发育阶段无关,并且交感神经去神经支配(双侧颈上神经节切除术)会逆转重塑并降低血压。与我们的假设相反,免疫组织化学显示,与 Wistar 大鼠相比,成年 SH 大鼠的去甲肾上腺素能交感神经纤维密度降低(P < 0.01)。出乎意料的是,与年龄匹配的 Wistar 大鼠相比,PHSH 大鼠的副交感神经纤维密度降低了 65%,这是通过囊泡乙酰胆碱转运蛋白(α-VAChT)和血管活性肠肽(α-VIP)免疫荧光评估的(P < 0.002)。尽管椎基底动脉内部颈交感神经分支的神经活性在 PHSH 大鼠中高于 Wistar 大鼠,但它的去神经支配对椎基底动脉形态或 SH 大鼠的动脉压持续影响没有影响。我们的神经解剖学和功能数据不支持交感神经在 PHSH 或 SH 大鼠椎基底动脉壁重塑中的作用。椎基底动脉的重塑和内部颈交感神经的活性升高,加上其副交感神经支配减少,表明 PHSH 和 SH 大鼠的血管舒张能力受损,这可能解释了它们的脑干灌注不足。

相似文献

1
Differences in autonomic innervation to the vertebrobasilar arteries in spontaneously hypertensive and Wistar rats.
J Physiol. 2018 Aug;596(16):3505-3529. doi: 10.1113/JP275973. Epub 2018 Jul 19.
2
Elevated vertebrobasilar artery resistance in neonatal spontaneously hypertensive rats.
J Appl Physiol (1985). 2011 Jul;111(1):149-56. doi: 10.1152/japplphysiol.00220.2011. Epub 2011 Apr 14.
3
Altered cerebral vessel innervation in the spontaneously hypertensive rat.
Circ Res. 1984 Sep;55(3):392-403. doi: 10.1161/01.res.55.3.392.
4
Sympathetic activation increases basilar arterial blood flow in normotensive but not hypertensive rats.
Am J Physiol Heart Circ Physiol. 2012 Mar 1;302(5):H1123-30. doi: 10.1152/ajpheart.01016.2011. Epub 2011 Dec 30.
5
Anatomic and functional evidence for renal autonomic innervation in normotensive and hypertensive rats.
Am J Physiol Renal Physiol. 2024 Nov 1;327(5):F885-F898. doi: 10.1152/ajprenal.00133.2024. Epub 2024 Sep 19.
6
Heightened respiratory-parasympathetic coupling to airways in the spontaneously hypertensive rat.
J Physiol. 2021 Jun;599(12):3237-3252. doi: 10.1113/JP280981. Epub 2021 May 12.
7
Autonomic innervation of cerebral blood vessels decreases in renal hypertensive rats.
Hypertension. 1985 Jul-Aug;7(4):514-8. doi: 10.1161/01.hyp.7.4.514.
8
Neurogenic hypertension and elevated vertebrobasilar arterial resistance: is there a causative link?
Curr Hypertens Rep. 2012 Jun;14(3):261-9. doi: 10.1007/s11906-012-0267-6.
10
Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target?
J Physiol. 2016 Nov 15;594(22):6463-6485. doi: 10.1113/JP272450. Epub 2016 Oct 5.

本文引用的文献

1
Intracranial Pressure Is a Determinant of Sympathetic Activity.
Front Physiol. 2018 Feb 8;9:11. doi: 10.3389/fphys.2018.00011. eCollection 2018.
2
ImageJ2: ImageJ for the next generation of scientific image data.
BMC Bioinformatics. 2017 Nov 29;18(1):529. doi: 10.1186/s12859-017-1934-z.
3
Excessive Respiratory Modulation of Blood Pressure Triggers Hypertension.
Cell Metab. 2017 Mar 7;25(3):739-748. doi: 10.1016/j.cmet.2017.01.019. Epub 2017 Feb 16.
4
Is High Blood Pressure Self-Protection for the Brain?
Circ Res. 2016 Dec 9;119(12):e140-e151. doi: 10.1161/CIRCRESAHA.116.309493. Epub 2016 Sep 26.
5
Parasympathetic innervation of vertebrobasilar arteries: is this a potential clinical target?
J Physiol. 2016 Nov 15;594(22):6463-6485. doi: 10.1113/JP272450. Epub 2016 Oct 5.
6
Intracranial mechanisms for preserving brain blood flow in health and disease.
Acta Physiol (Oxf). 2017 Jan;219(1):274-287. doi: 10.1111/apha.12706. Epub 2016 Jun 8.
8
Brainstem hypoxia contributes to the development of hypertension in the spontaneously hypertensive rat.
Hypertension. 2015 Apr;65(4):775-83. doi: 10.1161/HYPERTENSIONAHA.114.04683. Epub 2015 Feb 23.
9
Sympathetic reinnervation of peripheral targets following bilateral axotomy of the adult superior cervical ganglion.
Brain Res. 2012 Sep 14;1473:44-54. doi: 10.1016/j.brainres.2012.07.033. Epub 2012 Jul 24.
10
Fiji: an open-source platform for biological-image analysis.
Nat Methods. 2012 Jun 28;9(7):676-82. doi: 10.1038/nmeth.2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验