Lin Linhan, Zhang Jianli, Peng Xiaolei, Wu Zilong, Coughlan Anna C H, Mao Zhangming, Bevan Michael A, Zheng Yuebing
Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712, USA.
Materials Science & Engineering Program and Texas Materials Institute, University of Texas at Austin, Austin, TX 78712, USA.
Sci Adv. 2017 Sep 8;3(9):e1700458. doi: 10.1126/sciadv.1700458. eCollection 2017 Sep.
Colloidal matter exhibits unique collective behaviors beyond what occurs at single-nanoparticle and atomic scales. Treating colloidal particles as building blocks, researchers are exploiting new strategies to rationally organize colloidal particles into complex structures for new functions and devices. Despite tremendous progress in directed assembly and self-assembly, a truly versatile assembly technique without specific functionalization of the colloidal particles remains elusive. We develop a new strategy to assemble colloidal matter under a light-controlled temperature field, which can solve challenges in the existing assembly techniques. By adding an anionic surfactant (that is, cetyltrimethylammonium chloride), which serves as a surface charge source, a macro ion, and a micellar depletant, we generate a light-controlled thermoelectric field to manipulate colloidal atoms and a depletion attraction force to assemble the colloidal atoms into two-dimensional (2D) colloidal matter. The general applicability of this opto-thermophoretic assembly (OTA) strategy allows us to build colloidal matter of diverse colloidal sizes (from subwavelength scale to micrometer scale) and materials (polymeric, dielectric, and metallic colloids) with versatile configurations and tunable bonding strengths and lengths. We further demonstrate that the incorporation of the thermoelectric field into the optical radiation force can achieve 3D reconfiguration of the colloidal matter. The OTA strategy releases the rigorous design rules required in the existing assembly techniques and enriches the structural complexity in colloidal matter, which will open a new window of opportunities for basic research on matter organization, advanced material design, and applications.
胶体物质展现出超越单纳米颗粒和原子尺度所发生现象的独特集体行为。研究人员将胶体颗粒视为构建单元,正在探索新策略,以合理地将胶体颗粒组织成具有新功能和新器件的复杂结构。尽管在定向组装和自组装方面取得了巨大进展,但一种无需对胶体颗粒进行特定功能化的真正通用的组装技术仍然难以实现。我们开发了一种在光控温度场下组装胶体物质的新策略,该策略能够解决现有组装技术中的挑战。通过添加一种阴离子表面活性剂(即十六烷基三甲基氯化铵),其作为表面电荷源、大离子和胶束耗尽剂,我们产生了一个光控热电场来操纵胶体原子,并产生一种耗尽吸引力将胶体原子组装成二维(2D)胶体物质。这种光热泳组装(OTA)策略的普遍适用性使我们能够构建具有多种构型以及可调键合强度和长度的、不同胶体尺寸(从亚波长尺度到微米尺度)和材料(聚合物、电介质和金属胶体)的胶体物质。我们进一步证明,将热电场纳入光辐射力可以实现胶体物质的三维重构。OTA策略放宽了现有组装技术中所需的严格设计规则,并丰富了胶体物质中的结构复杂性,这将为物质组织的基础研究、先进材料设计及应用打开一扇新的机遇之窗。