Kotsifaki Domna G, Nic Chormaic Síle
Light-Matter Interactions for Quantum Technologies Unit, Okinawa Institute of Science and Technology Graduate University, Onna-San, Okinawa, Japan.
Natural and Applied Sciences, Duke Kunshan University, 8 Duke Ave, Kunshan, Jiangsu, China.
Nanophotonics. 2022 Apr 5;11(10):2199-2218. doi: 10.1515/nanoph-2022-0014. eCollection 2022 May.
Plasmonic optical tweezers that stem from the need to trap and manipulate ever smaller particles using non-invasive optical forces, have made significant contributions to precise particle motion control at the nanoscale. In addition to the optical forces, other effects have been explored for particle manipulation. For instance, the plasmonic heat delivery mechanism generates micro- and nanoscale optothermal hydrodynamic effects, such as natural fluid convection, Marangoni fluid convection and thermophoretic effects that influence the motion of a wide range of particles from dielectric to biomolecules. In this review, a discussion of optothermal effects generated by heated plasmonic nanostructures is presented with a specific focus on applications to optical trapping and particle manipulation. It provides a discussion on the existing challenges of optothermal mechanisms generated by plasmonic optical tweezers and comments on their future opportunities in life sciences.
等离子体光镊源于利用非侵入性光学力捕获和操纵越来越小的粒子的需求,为纳米尺度下精确的粒子运动控制做出了重大贡献。除了光学力之外,人们还探索了其他用于粒子操纵的效应。例如,等离子体热传递机制会产生微米和纳米尺度的光热流体动力学效应,如自然流体对流、马兰戈尼流体对流和热泳效应,这些效应会影响从电介质到生物分子等各种粒子的运动。在这篇综述中,我们将讨论由加热的等离子体纳米结构产生的光热效应,并特别关注其在光镊和粒子操纵中的应用。本文还讨论了等离子体光镊产生的光热机制目前存在的挑战,并对其在生命科学领域的未来机遇进行了评论。