Suppr超能文献

在不完全谱系分类和迁移存在的情况下的分歧估计。

Divergence Estimation in the Presence of Incomplete Lineage Sorting and Migration.

机构信息

Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, SE 405 30 Göteborg, Sweden.

出版信息

Syst Biol. 2019 Jan 1;68(1):19-31. doi: 10.1093/sysbio/syy041.

Abstract

This article focuses on the problem of estimating a species tree from multilocus data in the presence of incomplete lineage sorting and migration. I develop a mathematical model similar to IMa2 (Hey 2010) for the relevant evolutionary processes which allows both the population size parameters and the migration rates between pairs of species tree branches to be integrated out. I then describe a BEAST2 package DENIM (Divergence estimation notwithstanding ILS and migration) which is based on this model and which uses an approximation to sample from the posterior. The approximation is based on the assumption that migrations are rare, and it only samples from certain regions of the posterior which seem likely given this assumption. The method breaks down if there is a lot of migration. Using simulations, Leaché et al. (2014) showed that using the standard multispecies coalescent model to infer a species tree can result in poor accuracy if migration is present. I reanalyze this simulated data to explore DENIM's performance and demonstrate substantial improvements in accuracy over *BEAST. I also reanalyze an empirical data set.

摘要

本文重点研究了在不完全谱系分选和迁移存在的情况下,从多点数据估计物种树的问题。我为相关的进化过程开发了一个类似于 IMa2(Hey 2010)的数学模型,该模型允许将种群大小参数和物种树分支对之间的迁移率整合出来。然后,我描述了一个基于该模型的 BEAST2 包 DENIM(尽管存在 ILS 和迁移,但仍进行分歧估计),它使用对后验的近似抽样。该近似基于迁移很少的假设,并且仅从给定该假设的后验的某些区域中进行抽样。如果有大量迁移,该方法将失效。Leaché 等人(2014 年)通过模拟表明,如果存在迁移,使用标准的多物种合并模型推断物种树可能会导致准确性较差。我重新分析了这个模拟数据,以探讨 DENIM 的性能,并证明了它在准确性方面相对于*BEAST 有了显著的提高。我还重新分析了一个经验数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验