Suppr超能文献

可见光辅助的铋-二氧化钛纳米管复合材料光催化还原六价铬和降解染料。

Visible-light-assisted photocatalytic activity of bismuth-TiO nanotube composites for chromium reduction and dye degradation.

机构信息

Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.

出版信息

Chemosphere. 2018 Sep;207:285-292. doi: 10.1016/j.chemosphere.2018.05.075. Epub 2018 May 17.

Abstract

TiO nanotubes (TNTs) were synthesized on a Ti sheet using the electrochemical anodization method. Bismuth (Bi) was coupled on the anodized TNTs via hydrothermal process. We verified the effect of different Bi concentrations on the photocatalytic properties of Bi-TNT composites. The obtained samples were characterized using field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-Vis diffuse reflectance spectra, and photoluminescence spectra. The Bi-TNT photocatalysts exhibited higher activities by factors of 6.6 and 3.6 toward chromium reduction and methylene blue degradation, respectively, under visible light than the pure TNTs. The Bi-TNT material was recycled to examine the stability of the catalyst. The quantum efficiency of the photocatalytic system was calculated, and the synergistic effects of bismuth modification were discussed. The Bi-TNT composites were observed to be promising for separation of photoinduced e and h by decreasing charge recombination, and helped the formation of the hydroxyl radicals, h, and superoxides used in the photocatalytic process.

摘要

TiO 纳米管(TNTs)采用电化学阳极氧化法在 Ti 片上合成。铋(Bi)通过水热法耦合到氧化的 TNTs 上。我们验证了不同 Bi 浓度对 Bi-TNT 复合材料光催化性能的影响。使用场发射扫描电子显微镜、能量色散 X 射线光谱、X 射线衍射、X 射线光电子能谱、拉曼光谱、紫外可见漫反射光谱和光致发光光谱对获得的样品进行了表征。与纯 TNTs 相比,Bi-TNT 光催化剂在可见光下对六价铬还原和亚甲基蓝降解的活性分别提高了 6.6 倍和 3.6 倍。回收 Bi-TNT 材料以检查催化剂的稳定性。计算了光催化体系的量子效率,并讨论了铋修饰的协同效应。观察到 Bi-TNT 复合材料通过减少电荷复合来促进光生电子和空穴的分离,并有助于形成用于光催化过程的羟基自由基、h 和超氧化物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验