Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands.
Hum Brain Mapp. 2020 Nov;41(16):4478-4499. doi: 10.1002/hbm.25117. Epub 2020 Aug 26.
Diffusion magnetic resonance imaging can indirectly infer the microstructure of tissues and provide metrics subject to normal variability in a population. Potentially abnormal values may yield essential information to support analysis of controls and patients cohorts, but subtle confounds could be mistaken for purely biologically driven variations amongst subjects. In this work, we propose a new harmonization algorithm based on adaptive dictionary learning to mitigate the unwanted variability caused by different scanner hardware while preserving the natural biological variability of the data. Our harmonization algorithm does not require paired training data sets, nor spatial registration or matching spatial resolution. Overcomplete dictionaries are learned iteratively from all data sets at the same time with an adaptive regularization criterion, removing variability attributable to the scanners in the process. The obtained mapping is applied directly in the native space of each subject toward a scanner-space. The method is evaluated with a public database which consists of two different protocols acquired on three different scanners. Results show that the effect size of the four studied diffusion metrics is preserved while removing variability attributable to the scanner. Experiments with alterations using a free water compartment, which is not simulated in the training data, shows that the modifications applied to the diffusion weighted images are preserved in the diffusion metrics after harmonization, while still reducing global variability at the same time. The algorithm could help multicenter studies pooling their data by removing scanner specific confounds, and increase statistical power in the process.
扩散磁共振成像可以间接推断组织的微观结构,并提供受人群中正常变异性影响的指标。潜在的异常值可能提供支持对照和患者队列分析的重要信息,但细微的混淆可能会被误认为是受试者之间纯粹由生物学驱动的变化。在这项工作中,我们提出了一种新的基于自适应字典学习的调和算法,以减轻不同扫描仪硬件引起的不必要的变异性,同时保留数据的自然生物学变异性。我们的调和算法不需要配对的训练数据集,也不需要空间配准或匹配空间分辨率。过完备字典是通过同时从所有数据集迭代学习的,具有自适应正则化准则,在这个过程中消除归因于扫描仪的可变性。所获得的映射直接应用于每个受试者的本地空间到扫描仪空间。该方法使用一个公共数据库进行评估,该数据库由三个不同扫描仪上采集的两个不同协议组成。结果表明,在所研究的四个扩散指标中,保留了效应大小,同时去除了归因于扫描仪的可变性。使用自由水室进行的实验表明,在训练数据中没有模拟的自由水室,在调和后,扩散加权图像中应用的修改仍然保存在扩散指标中,同时仍然降低了全局可变性。该算法可以通过去除特定于扫描仪的混杂因素来帮助多中心研究汇集他们的数据,并在此过程中增加统计能力。