Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelshikh University, Kafrelshikh, Egypt.
Department of Physiology, Biochemistry and Pharmacology, Faculty of Veterinary Medicine, King Faisal University, Alhofuf, Alahsa, Saudi Arabia.
Comput Biol Chem. 2018 Aug;75:205-212. doi: 10.1016/j.compbiolchem.2018.05.020. Epub 2018 May 17.
Structural studies related to Middle East Respiratory Syndrome Coronavirus (MERS CoV) infection process are so limited. In this study, molecular dynamics (MD) simulations were carried out to unravel changes in the MERS CoV heptad repeat domains (HRs) and factors affecting fusion state HR stability. Results indicated that HR trimer is more rapidly stabilized, having stable system energy and lower root mean square deviations (RMSDs). While trimers were the predominant active form of CoVs HRs, monomers were also discovered in both of viral and cellular membranes. In order to find the differences between S2 monomer and trimer molecular dynamics, S2 monomer was modelled and subjected to MD simulation. In contrast to S2 trimer, S2 monomer was unstable, having high RMSDs with major drifts above 8 Å. Fluctuation of HR residue positions revealed major changes in the C-terminal of HR2 and the linker coil between HR1 and HR2 in both monomer and trimer. Hydrophobic residues at the a and d positions of HR helices stabilize the whole system, with minimal changes in RMSD. The global distance test and contact area difference scores support instability of MERS CoV S2 monomer. Analysis of HR1-HR2 inter-residue contacts and interaction energy revealed three energy scales along HR helices. Two strong interaction energies were identified at the start of the HR2 helix and at the C-terminal of HR2. The identified critical residues by MD simulation and residues at the a and d positions of HR helix were strong stabilizers of HR recognition.
中东呼吸综合征冠状病毒(MERS-CoV)感染过程的结构研究非常有限。在这项研究中,进行了分子动力学(MD)模拟,以揭示 MERS-CoV 七肽重复结构域(HR)的变化以及影响融合状态 HR 稳定性的因素。结果表明,HR 三聚体更快地稳定,具有稳定的系统能量和较低的均方根偏差(RMSD)。虽然三聚体是 CoVs HR 的主要活性形式,但在病毒和细胞膜中也发现了单体。为了找到 S2 单体和三聚体分子动力学之间的差异,构建了 S2 单体模型并进行了 MD 模拟。与 S2 三聚体相比,S2 单体不稳定,具有较高的 RMSD,主要漂移超过 8Å。HR 残基位置的波动揭示了 HR2 的 C 末端和 HR1 与 HR2 之间的连接环在单体和三聚体中都发生了重大变化。HR 螺旋的 a 和 d 位置的疏水性残基稳定整个系统,RMSD 变化最小。全局距离测试和接触面积差评分支持 MERS-CoV S2 单体的不稳定性。HR1-HR2 残基间接触和相互作用能的分析揭示了 HR 螺旋上的三个能量尺度。在 HR2 螺旋的起始处和 HR2 的 C 末端处确定了两个强相互作用能。MD 模拟确定的关键残基和 HR 螺旋的 a 和 d 位置残基是 HR 识别的强稳定剂。