Reda Islam, Khalil Ashraf, Elmogy Mohammed, Abou El-Fetouh Ahmed, Shalaby Ahmed, Abou El-Ghar Mohamed, Elmaghraby Adel, Ghazal Mohammed, El-Baz Ayman
1 Faculty of Computers and Information, Mansoura University, Mansoura, Egypt.
2 Department of Bioengineering, University of Louisville, Louisville, KY, USA.
Technol Cancer Res Treat. 2018 Jan 1;17:1533034618775530. doi: 10.1177/1533034618775530.
The objective of this work is to develop a computer-aided diagnostic system for early diagnosis of prostate cancer. The presented system integrates both clinical biomarkers (prostate-specific antigen) and extracted features from diffusion-weighted magnetic resonance imaging collected at multiple b values. The presented system performs 3 major processing steps. First, prostate delineation using a hybrid approach that combines a level-set model with nonnegative matrix factorization. Second, estimation and normalization of diffusion parameters, which are the apparent diffusion coefficients of the delineated prostate volumes at different b values followed by refinement of those apparent diffusion coefficients using a generalized Gaussian Markov random field model. Then, construction of the cumulative distribution functions of the processed apparent diffusion coefficients at multiple b values. In parallel, a K-nearest neighbor classifier is employed to transform the prostate-specific antigen results into diagnostic probabilities. Finally, those prostate-specific antigen-based probabilities are integrated with the initial diagnostic probabilities obtained using stacked nonnegativity constraint sparse autoencoders that employ apparent diffusion coefficient-cumulative distribution functions for better diagnostic accuracy. Experiments conducted on 18 diffusion-weighted magnetic resonance imaging data sets achieved 94.4% diagnosis accuracy (sensitivity = 88.9% and specificity = 100%), which indicate the promising results of the presented computer-aided diagnostic system.
这项工作的目标是开发一种用于前列腺癌早期诊断的计算机辅助诊断系统。所提出的系统整合了临床生物标志物(前列腺特异性抗原)以及从在多个b值下采集的扩散加权磁共振成像中提取的特征。所提出的系统执行三个主要处理步骤。首先,使用一种将水平集模型与非负矩阵分解相结合的混合方法进行前列腺轮廓描绘。其次,对扩散参数进行估计和归一化,这些参数是在不同b值下所描绘前列腺体积的表观扩散系数,随后使用广义高斯马尔可夫随机场模型对这些表观扩散系数进行细化。然后,构建在多个b值下处理后的表观扩散系数的累积分布函数。同时,采用K近邻分类器将前列腺特异性抗原结果转换为诊断概率。最后,将那些基于前列腺特异性抗原的概率与使用堆叠非负约束稀疏自动编码器获得的初始诊断概率进行整合,该自动编码器采用表观扩散系数 - 累积分布函数以提高诊断准确性。对18个扩散加权磁共振成像数据集进行的实验实现了94.4%的诊断准确率(灵敏度 = 88.9%,特异性 = 100%),这表明所提出的计算机辅助诊断系统取得了有前景的结果。