Division of Psychiatric Genomics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90024, USA.
Am J Hum Genet. 2018 Jun 7;102(6):1169-1184. doi: 10.1016/j.ajhg.2018.04.011. Epub 2018 May 24.
Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, however, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts, leads to improved fine mapping of GWAS associations. Using genotypes and gene expression levels from post-mortem human brain samples (n = 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psychiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong evidence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for their functional follow-up.
通过将全基因组关联研究(GWAS)统计数据与表达数量性状基因座(eQTL)整合,并确定哪些变体同时存在于 GWAS 和 eQTL 信号中,可以鉴定 GWAS 位点内的因果基因和变体。然而,大多数分析仅考虑边际 eQTL 信号,而不是将该信号分解为每个基因的多个条件独立信号。在这里,我们表明,分析条件 eQTL 特征(在特定的细胞或时间背景下可能很重要)可以提高 GWAS 关联的精细映射。使用 CommonMind 联盟(CMC)报告的死后人脑样本(n = 467)的基因型和基因表达水平,我们发现条件 eQTL 很普遍;63%具有主要 eQTL 的基因也具有条件 eQTL。此外,与条件 eQTL 相关的基因组特征与基因表达的特定条件(例如,组织、细胞类型或发育时间点特异性)调节一致。整合 2014 年精神疾病基因组学联盟精神分裂症(SCZ)GWAS 和 CMC 主要和条件 eQTL 数据,揭示了 40 个具有强烈共定位证据(后验概率>0.8)的位点,包括 6 个具有条件 eQTL 共定位的位点。我们的共定位分析支持了先前报道的基因,确定了与精神分裂症风险相关的新基因,并为它们的功能后续提供了具体的假设。