Suppr超能文献

用于从用户面部视频监测心率和呼吸频率的算法

Algorithms for Monitoring Heart Rate and Respiratory Rate From the Video of a User's Face.

作者信息

Sanyal Shourjya, Nundy Koushik Kumar

机构信息

Think Biosolution Limited, NDRCThe Digital ExchangeDublin8Ireland.

出版信息

IEEE J Transl Eng Health Med. 2018 Apr 12;6:2700111. doi: 10.1109/JTEHM.2018.2818687. eCollection 2018.

Abstract

Smartphone cameras can measure heart rate (HR) by detecting pulsatile photoplethysmographic (iPPG) signals from post-processing the video of a subject's face. The iPPG signal is often derived from variations in the intensity of the green channel as shown by Poh and Verkruysse . In this pilot study, we have introduced a novel iPPG method where by measuring variations in color of reflected light, i.e., Hue, and can therefore measure both HR and respiratory rate (RR) from the video of a subject's face. This paper was performed on 25 healthy individuals (Ages 20-30, 15 males and 10 females, and skin color was Fitzpatrick scale 1-6). For each subject we took two 20 second video of the subject's face with minimal movement, one with flash ON and one with flash OFF. While recording the videos we simultaneously measuring HR using a Biosync B-50DL Finger Heart Rate Monitor, and RR using self-reporting. This paper shows that our proposed approach of measuring iPPG using Hue (range 0-0.1) gives more accurate readings than the Green channel. HR/Hue (range 0-0.1) ([Formula: see text], [Formula: see text]-value = 4.1617, and RMSE = 0.8887) is more accurate compared with HR/Green ([Formula: see text], [Formula: see text]-value = 11.60172, and RMSE = 0.9068). RR/Hue (range 0-0.1) ([Formula: see text], [Formula: see text]-value = 0.2885, and RMSE = 3.8884) is more accurate compared with RR/Green ([Formula: see text], [Formula: see text]-value = 0.5608, and RMSE = 5.6885). We hope that this hardware agnostic approach for detection of vital signals will have a huge potential impact in telemedicine, and can be used to tackle challenges, such as continuous non-contact monitoring of neo-natal and elderly patients. An implementation of the algorithm can be found at https://pulser.thinkbiosolution.com.

摘要

智能手机摄像头可以通过对拍摄的受试者面部视频进行后处理,检测脉动光电容积脉搏波描记(iPPG)信号来测量心率(HR)。如Poh和Verkruysse所示,iPPG信号通常源自绿色通道强度的变化。在这项初步研究中,我们引入了一种新颖的iPPG方法,即通过测量反射光颜色的变化(即色调),从而能够从受试者面部视频中测量心率和呼吸频率(RR)。本研究对25名健康个体进行(年龄20 - 30岁,15名男性和10名女性,肤色为菲茨帕特里克皮肤分类法1 - 6级)。对于每个受试者,我们拍摄了两段受试者面部的20秒视频,且动作尽量少,一段开启闪光灯,一段关闭闪光灯。在录制视频的同时,我们使用Biosync B - 50DL手指心率监测仪同步测量心率,并通过自我报告测量呼吸频率。本文表明,我们提出的使用色调(范围0 - 0.1)测量iPPG的方法比绿色通道能给出更准确的读数。心率/色调(范围0 - 0.1)([公式:见原文],[公式:见原文] - 值 = 4.1617,均方根误差 = 0.8887)比心率/绿色通道([公式:见原文],[公式:见原文] - 值 = 11.60172,均方根误差 = 0.9068)更准确。呼吸频率/色调(范围0 - 0.1)([公式:见原文],[公式:见原文] - 值 = 0.2885,均方根误差 = 3.8884)比呼吸频率/绿色通道([公式:见原文],[公式:见原文] - 值 = 0.5608,均方根误差 = 5.6885)更准确。我们希望这种用于检测生命体征的与硬件无关的方法在远程医疗中能产生巨大的潜在影响,并可用于应对诸如对新生儿和老年患者进行持续非接触监测等挑战。该算法的实现可在https://pulser.thinkbiosolution.com找到。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/560f/5957265/73f6fa826ce9/nundy1-2818687.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验