School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
Macromol Rapid Commun. 2018 Jul;39(13):e1800274. doi: 10.1002/marc.201800274. Epub 2018 May 28.
Current additive manufacturing methods have significant limitations in the classes of compatible polymers. Many polymers of significant technological interest cannot currently be 3D printed. Here, a generalizable method for 3D printing of viscous tenary polymer solutions (polymer/solvent/nonsolvent) is applied to both "intrinsically porous" (a polymer of intrinsic microporosity, PIM-1) and "intrinsically nonporous" (cellulose acetate) polymers. Successful ternary ink formulations require balancing of solution thermodynamics (phase separation), mass transfer (solvent evaporation), and rheology. As a demonstration, a microporous polymer (PIM-1) incompatible with current additive manufacturing technologies is 3D printed into a high-efficiency mass transfer contactor exhibiting hierarchical porosity ranging from sub-nanometer to millimeter pores. Short contactors (1.27 cm) can fully purify (<1 ppm) toluene vapor (1000 ppm) in N gas for 1.7 h, which is six times longer than PIM-1 in traditional structures, and more than 4000 times the residence time of gas in the contactor. This solution-based additive manufacturing approach greatly extends the range of 3D-printable materials.
目前的增材制造方法在相容聚合物类别上存在显著的局限性。许多具有重要技术意义的聚合物目前无法进行 3D 打印。在这里,我们应用了一种可普遍适用于粘性三元聚合物溶液(聚合物/溶剂/非溶剂)的 3D 打印方法,对“本征多孔”(具有本征微孔的聚合物,PIM-1)和“本征无孔”(醋酸纤维素)聚合物进行了打印。成功的三元墨水配方需要平衡溶液热力学(相分离)、质量传递(溶剂蒸发)和流变学。作为一个演示,将一种与当前增材制造技术不兼容的微孔聚合物(PIM-1)3D 打印成高效传质接触器,其具有从亚纳米到毫米孔的分级多孔结构。短接触器(1.27 cm)可以在 N 气体中将甲苯蒸气(1000 ppm)完全净化(<1 ppm),时间为 1.7 小时,比传统结构中的 PIM-1 长六倍,气体在接触器中的停留时间超过 4000 倍。这种基于溶液的增材制造方法极大地扩展了可 3D 打印材料的范围。