Bertolazzo Andressa A, Naullage Pavithra M, Peters Baron, Molinero Valeria
Department of Chemistry , The University of Utah , Salt Lake City , Utah 84112-0580 , United States.
Departamento de Ciências Exatas e Educação , Universidade Federal de Santa Catarina , Blumenau , State of Santa Catarina 88040-900 , Brazil.
J Phys Chem Lett. 2018 Jun 21;9(12):3224-3231. doi: 10.1021/acs.jpclett.8b01210. Epub 2018 Jun 4.
The slow nucleation of clathrate hydrates is a central challenge for their use in the storage and transportation of natural gas. Molecules that strongly adsorb to the clathrate-water interface decrease the crystal-water surface tension, lowering the barrier for clathrate nucleation. Surfactants are widely used to promote the nucleation and growth of clathrate hydrates. It has been proposed that these amphiphilic molecules bind to the clathrate surface via hydrogen bonding. However, recent studies reveal that PVCap, an amphiphilic polymer, binds to clathrates through hydrophobic moieties. Here we use molecular dynamic simulations and theory to investigate the mode and strength of binding of surfactants to the clathrate-water interface and their effect on the nucleation rate. We find that the surfactants bind to the clathrate-water interface exclusively through their hydrophobic tails. The binding is strong, driven by the entropy of dehydration of the alkyl chain, as it penetrates empty cavities at the hydrate surface. The hydrophobic attraction of alkyl groups to the clathrate surface also results in strong adsorption of alkanes. We identify two regimes for the binding of surfactants as a function of their density at the hydrate surface, which we interpret to correspond to the two steps of the Langmuir adsorption isotherm observed in experiments. Our results indicate that hydrophobic attraction to the clathrate-water interface is key for the design of soluble additives that promote the nucleation of hydrates. We use the calculated adsorption coefficients to estimate the concentration of sodium dodecyl sulfate (SDS) required to reach nucleation rates for methane hydrate consistent with those measured in experiments. To our knowledge, this study is the first to quantify the effect of surfactant concentration in the nucleation rate of clathrate hydrates.
笼形水合物的缓慢成核是其用于天然气储存和运输的一个核心挑战。强烈吸附在笼形水合物 - 水界面的分子会降低晶体 - 水表面张力,降低笼形水合物成核的势垒。表面活性剂被广泛用于促进笼形水合物的成核和生长。有人提出这些两亲分子通过氢键结合到笼形水合物表面。然而,最近的研究表明,两亲聚合物PVCap通过疏水部分与笼形水合物结合。在这里,我们使用分子动力学模拟和理论来研究表面活性剂与笼形水合物 - 水界面的结合模式和强度及其对成核速率的影响。我们发现表面活性剂仅通过其疏水尾部结合到笼形水合物 - 水界面。这种结合很强,是由烷基链脱水的熵驱动的,因为它穿透了水合物表面的空穴。烷基对笼形水合物表面的疏水吸引力也导致烷烃的强烈吸附。我们根据表面活性剂在水合物表面的密度确定了两种结合状态,我们将其解释为对应于实验中观察到的朗缪尔吸附等温线的两个步骤。我们的结果表明,对笼形水合物 - 水界面的疏水吸引力是设计促进水合物成核的可溶性添加剂的关键。我们使用计算出的吸附系数来估计达到与实验测量值一致的甲烷水合物成核速率所需的十二烷基硫酸钠(SDS)浓度。据我们所知,这项研究是首次量化表面活性剂浓度对笼形水合物成核速率的影响。