Suppr超能文献

黑麦草冠锈病抗性的基因组预测。

Genomic prediction of crown rust resistance in Lolium perenne.

机构信息

Teagasc, Crop Science Department, Oak Park, Carlow, R93 XE12, Ireland.

Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland.

出版信息

BMC Genet. 2018 May 29;19(1):35. doi: 10.1186/s12863-018-0613-z.

Abstract

BACKGROUND

Genomic selection (GS) can accelerate genetic gains in breeding programmes by reducing the time it takes to complete a cycle of selection. Puccinia coronata f. sp lolli (crown rust) is one of the most widespread diseases of perennial ryegrass and can lead to reductions in yield, persistency and nutritional value. Here, we used a large perennial ryegrass population to assess the accuracy of using genome wide markers to predict crown rust resistance and to investigate the factors affecting predictive ability.

RESULTS

Using these data, predictive ability for crown rust resistance in the complete population reached a maximum of 0.52. Much of the predictive ability resulted from the ability of markers to capture genetic relationships among families within the training set, and reducing the marker density had little impact on predictive ability. Using permutation based variable importance measure and genome wide association studies (GWAS) to identify and rank markers enabled the identification of a small subset of SNPs that could achieve predictive abilities close to those achieved using the complete marker set.

CONCLUSION

Using a GWAS to identify and rank markers enabled a small panel of markers to be identified that could achieve higher predictive ability than the same number of randomly selected markers, and predictive abilities close to those achieved with the entire marker set. This was particularly evident in a sub-population characterised by having on-average higher genome-wide linkage disequilibirum (LD). Higher predictive abilities with selected markers over random markers suggests they are in LD with QTL. Accuracy due to genetic relationships will decay rapidly over generations whereas accuracy due to LD will persist, which is advantageous for practical breeding applications.

摘要

背景

基因组选择(GS)可以通过缩短选择周期来加速育种计划的遗传进展。禾冠柄锈菌( Puccinia coronata f. sp lolli )是黑麦草最广泛的病害之一,可导致产量、持久性和营养价值降低。在这里,我们使用一个大型黑麦草群体来评估使用全基因组标记预测冠锈病抗性的准确性,并研究影响预测能力的因素。

结果

利用这些数据,完整群体对冠锈病抗性的预测能力最高可达 0.52。大部分预测能力源于标记捕捉训练集中家系之间遗传关系的能力,降低标记密度对预测能力几乎没有影响。使用基于置换的变量重要性度量和全基因组关联研究(GWAS)来识别和对标记进行排序,使我们能够确定一小部分 SNP,这些 SNP 可以实现接近使用完整标记集的预测能力。

结论

使用 GWAS 来识别和对标记进行排序,可以确定一小部分标记,这些标记可以实现比随机选择的相同数量的标记更高的预测能力,并且与使用整个标记集获得的预测能力接近。在平均具有更高全基因组连锁不平衡(LD)的亚群体中,这种情况尤其明显。与随机标记相比,选择标记的预测能力更高,这表明它们与 QTL 处于 LD 状态。由于遗传关系而产生的准确性会在几代内迅速衰减,而由于 LD 而产生的准确性将持续存在,这对实际的育种应用是有利的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/779e/5975627/15076c3cc02f/12863_2018_613_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验