Institute for X-Ray Physics, University of Goettingen, Göttingen, 37077, Germany.
Institute for Mathematical Stochastics, University of Goettingen, Göttingen, 37077, Germany.
Prog Biophys Mol Biol. 2019 Jul;144:166-176. doi: 10.1016/j.pbiomolbio.2018.05.001. Epub 2018 May 26.
Blood platelets are the key cellular players in blood clotting and thus of great biomedical importance. While spreading at the site of injury, they reorganize their cytoskeleton within minutes and assume a flat appearance. As platelets possess no nucleus, many standard methods for visualizing cytoskeletal components by means of fluorescence tags fail. Here we employ silicon-rhodamine actin and tubulin probes for imaging these important proteins in a time-resolved manner. We find two distinct timescales for platelet spread area development and for cytoskeletal reorganization, indicating that although cell spreading is most likely associated with actin polymerization at the cell edges, distinct, stress-fiber-like actin structures within the cell, which may be involved in the generation of contractile forces, form on their own timescale. Following microtubule dynamics allows us to distinguish the role of myosin, microtubules and actin during early spreading.
血小板是血液凝结过程中的关键细胞因子,因此具有重要的生物医学意义。在损伤部位扩散时,血小板在数分钟内重新组织其细胞骨架并呈现出扁平的外观。由于血小板没有细胞核,许多用于通过荧光标记可视化细胞骨架成分的标准方法都无法使用。在这里,我们使用硅罗丹明肌动蛋白和微管蛋白探针以时间分辨的方式对这些重要蛋白进行成像。我们发现血小板铺展面积的发展和细胞骨架的重组有两个明显不同的时间尺度,这表明尽管细胞铺展很可能与细胞边缘的肌动蛋白聚合有关,但细胞内独特的、类似于应力纤维的肌动蛋白结构可能与收缩力的产生有关,它们会在自己的时间尺度上形成。跟踪微管动力学使我们能够区分早期铺展过程中肌球蛋白、微管和肌动蛋白的作用。