Suppr超能文献

血小板活化过程中线粒体的命运。

The fate of mitochondria during platelet activation.

机构信息

INSERM U1209, Centre National de la Recherche Scientifique Unité Mixed de Recherche 5309, Institute for Advanced Biosciences, University Grenoble Alpes, Grenoble, France.

Molecular Medicine Program, University of Utah, Salt Lake City, UT.

出版信息

Blood Adv. 2023 Oct 24;7(20):6290-6302. doi: 10.1182/bloodadvances.2023010423.

Abstract

Blood platelets undergo several successive motor-driven reorganizations of the cytoskeleton when they are recruited to an injured part of a vessel. These reorganizations take place during the platelet activation phase, the spreading process on the injured vessel or between fibrin fibers of the forming clot, and during clot retraction. All these steps require a lot of energy, especially the retraction of the clot when platelets develop strong forces similar to those of muscle cells. Platelets can produce energy through glycolysis and mitochondrial respiration. However, although resting platelets have only 5 to 8 individual mitochondria, they produce adenosine triphosphate predominantly via oxidative phosphorylation. Activated, spread platelets show an increase in size compared with resting platelets, and the question arises as to where the few mitochondria are located in these larger platelets. Using expansion microscopy, we show that the number of mitochondria per platelet is increased in spread platelets. Live imaging and focused ion beam-scanning electron microscopy suggest that a mitochondrial fission event takes place during platelet activation. Fission is Drp1 dependent because Drp1-deficient platelets have fused mitochondria. In nucleated cells, mitochondrial fission is associated with a shift to a glycolytic phenotype, and using clot retraction assays, we show that platelets have a more glycolytic energy production during clot retraction and that Drp1-deficient platelets show a defect in clot retraction.

摘要

当血小板被招募到血管受损部位时,它们会经历几个连续的、由马达驱动的细胞骨架重组。这些重排发生在血小板激活阶段、在受损血管上的扩展过程或在形成的血栓中的纤维蛋白纤维之间,以及在血栓收缩过程中。所有这些步骤都需要大量的能量,尤其是当血小板产生类似于肌肉细胞的强大力量时,血栓收缩需要大量的能量。血小板可以通过糖酵解和线粒体呼吸产生能量。然而,尽管静息血小板只有 5 到 8 个单个线粒体,但它们主要通过氧化磷酸化产生三磷酸腺苷。激活的、扩展的血小板与静息血小板相比,体积会增大,那么在这些较大的血小板中,少量的线粒体位于何处呢?使用扩展显微镜,我们发现扩展血小板中的每个血小板的线粒体数量增加。活细胞成像和聚焦离子束扫描电子显微镜提示,血小板激活过程中发生了线粒体裂变事件。分裂依赖于 Drp1,因为 Drp1 缺陷型血小板的线粒体融合。在有核细胞中,线粒体分裂与糖酵解表型的转变有关,我们通过血栓收缩测定表明,在血栓收缩过程中血小板产生更多的糖酵解能量,而 Drp1 缺陷型血小板在血栓收缩中表现出缺陷。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5384/10589785/b9fa0e6da980/BLOODA_ADV-2023-010423-ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验