Rodríguez Johanna G, Seifert Jan, Gidlund Vincent, Rianna Carmela, Schäffer Tilman E
Institute of Applied Physics, University of Tübingen, Tübingen, Germany.
Institute of Applied Physics, University of Tübingen, Tübingen, Germany.
Biophys Rep (N Y). 2025 Jul 24;5(3):100222. doi: 10.1016/j.bpr.2025.100222.
Platelets are small blood cells involved in hemostasis and wound healing. After activation, platelets interact with their surrounding environment and respond to biochemical and mechanical stimuli by mechanosensitive and haptotactic mechanisms. We used microcontact printing (μCP) to mimic the physiological conditions and limited space in small blood vessels in vitro. With μCP, we created 4-μm-wide fibrinogen lines to provide a spatially confined spreading space for platelets. We then let platelets adhere and spread on these lines while imaging them with optical microscopy and scanning ion conductance microscopy (SICM). Confined platelets showed significantly altered morphology, spreading dynamics, and mechanics compared with control platelets. Altered mechanical properties of confined platelets revealed reorganization of the actin cytoskeleton and the formation of regions of increased elastic modulus at the edges of the fibrinogen lines. Our results indicate that spatial confinement affects platelet mechanics and morphology on a subcellular level.
血小板是参与止血和伤口愈合的小血细胞。激活后,血小板与其周围环境相互作用,并通过机械敏感和趋触机制对生化和机械刺激作出反应。我们使用微接触印刷(μCP)在体外模拟小血管中的生理条件和有限空间。通过μCP,我们创建了4微米宽的纤维蛋白原线,为血小板提供空间受限的铺展空间。然后我们让血小板在这些线上粘附并铺展,同时用光学显微镜和扫描离子电导显微镜(SICM)对它们进行成像。与对照血小板相比,受限血小板的形态、铺展动力学和力学特性发生了显著改变。受限血小板机械性能的改变揭示了肌动蛋白细胞骨架的重组以及纤维蛋白原线边缘弹性模量增加区域的形成。我们的结果表明,空间限制在亚细胞水平上影响血小板的力学和形态。