Section of Nephrology, Children's Mercy Hospital and University of Missouri at Kansas City, Kansas City, MO.
Renal Research, Research and Development, Kansas City VA Medical Center, Kansas City, MO.
Transplantation. 2018 Oct;102(10):1624-1635. doi: 10.1097/TP.0000000000002304.
Kidney donors face a small but definite risk of end-stage renal disease 15 to 30 years postdonation. The development of proteinuria, hypertension with gradual decrease in kidney function in the donor after surgical resection of 1 kidney, has been attributed to hyperfiltration. Genetic variations, physiological adaptations, and comorbidities exacerbate the hyperfiltration-induced loss of kidney function in the years after donation. A focus on glomerular hemodynamics and capillary pressure has led to the development of drugs that target the renin-angiotensin-aldosterone system (RAAS), but these agents yield mixed results in transplant recipients and donors. Recent work on glomerular biomechanical forces highlights the differential effects of tensile stress and fluid flow shear stress (FFSS) from hyperfiltration. Capillary wall stretch due to glomerular capillary pressure increases tensile stress on podocyte foot processes that cover the capillary. In parallel, increased flow of the ultrafiltrate due to single-nephron glomerular filtration rate elevates FFSS on the podocyte cell body. Although tensile stress invokes the RAAS, FFSS predominantly activates the cyclooxygenase 2-prostaglandin E2-EP2 receptor axis. Distinguishing these 2 mechanisms is critical, as current therapeutic approaches focus on the RAAS system. A better understanding of the biomechanical forces can lead to novel therapeutic agents to target FFSS through the cyclooxygenase 2-prostaglandin E2-EP2 receptor axis in hyperfiltration-mediated injury. We present an overview of several aspects of the risk to transplant donors and discuss the relevance of FFSS in podocyte injury, loss of glomerular barrier function leading to albuminuria and gradual loss of renal function, and potential therapeutic strategies to mitigate hyperfiltration-mediated injury to the remaining kidney.
肾捐献者在捐献后 15 至 30 年内面临着终末期肾病的小但确定的风险。在 1 侧肾脏切除手术后,供体的蛋白尿、高血压和肾功能逐渐下降,这归因于超滤。遗传变异、生理适应和合并症使捐赠后几年内由超滤引起的肾功能丧失恶化。对肾小球血流动力学和毛细血管压力的关注导致了针对肾素-血管紧张素-醛固酮系统(RAAS)的药物的开发,但这些药物在移植受者和供体中的效果不一。最近对肾小球生物力学力的研究强调了拉伸应力和流体流动切应力(FFSS)对超滤的不同影响。由于肾小球毛细血管压力增加,毛细血管壁拉伸增加了覆盖毛细血管的足细胞足突的拉伸应力。同时,由于单肾单位肾小球滤过率升高,超滤液的流量增加,导致足细胞体上的 FFSS 增加。尽管拉伸应力会引发 RAAS,但 FFSS 主要激活环氧化酶 2-前列腺素 E2-EP2 受体轴。区分这两种机制至关重要,因为目前的治疗方法侧重于 RAAS 系统。对生物力学力的更好理解可以导致通过环氧化酶 2-前列腺素 E2-EP2 受体轴靶向 FFSS 的新型治疗药物,以针对超滤介导的损伤。我们介绍了移植供体风险的几个方面,并讨论了 FFSS 在足细胞损伤、肾小球屏障功能丧失导致蛋白尿和肾功能逐渐丧失中的相关性,以及减轻剩余肾脏超滤介导损伤的潜在治疗策略。