Suppr超能文献

利用简化代表性测序技术发现驼鹿(Alces alces)个体识别的 SNP 标记。

Discovery of SNPs for individual identification by reduced representation sequencing of moose (Alces alces).

机构信息

Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.

Department of Forestry and Environmental Resources, College of Natural Resources, North Carolina State University, Raleigh, North Carolina, United States of America.

出版信息

PLoS One. 2018 May 30;13(5):e0197364. doi: 10.1371/journal.pone.0197364. eCollection 2018.

Abstract

Monitoring of wild animal populations is challenging, yet reliable information about population processes is important for both management and conservation efforts. Access to molecular markers, such as SNPs, enables population monitoring through genotyping of various DNA sources. We have developed 96 high quality SNP markers for individual identification of moose (Alces alces), an economically and ecologically important top-herbivore in boreal regions. Reduced representation libraries constructed from 34 moose were high-throughput de novo sequenced, generating nearly 50 million read pairs. About 50 000 stacks of aligned reads containing one or more SNPs were discovered with the Stacks pipeline. Several quality criteria were applied on the candidate SNPs to find markers informative on the individual level and well representative for the population. An empirical validation by genotyping of sequenced individuals and additional moose, resulted in the selection of a final panel of 86 high quality autosomal SNPs. Additionally, five sex-specific SNPs and five SNPs for sympatric species diagnostics are included in the panel. The genotyping error rate was 0.002 for the total panel and probability of identities were low enough to separate individuals with high confidence. Moreover, the autosomal SNPs were highly informative also for population level analyses. The potential applications of this SNP panel are thus many including investigations of population size, sex ratios, relatedness, reproductive success and population structure. Ideally, SNP-based studies could improve today's population monitoring and increase our knowledge about moose population dynamics.

摘要

野生动物种群监测具有挑战性,但有关种群过程的可靠信息对管理和保护工作都很重要。利用分子标记(如 SNP)可以通过对各种 DNA 来源进行基因分型来进行种群监测。我们已经开发了 96 个用于驼鹿(Alces alces)个体识别的高质量 SNP 标记,驼鹿是北方地区具有经济和生态重要性的顶级食草动物。从 34 头驼鹿构建的简化基因组文库被高通量从头测序,产生了近 5000 万个读对。Stacks 管道发现了大约 50000 个包含一个或多个 SNP 的对齐读取堆栈。对候选 SNP 应用了几个质量标准,以找到在个体水平上有信息且对种群有很好代表性的标记。通过对测序个体和其他驼鹿进行基因分型的实证验证,最终选择了 86 个高质量的常染色体 SNP。此外,该面板还包括 5 个性别特异性 SNP 和 5 个用于同域物种诊断的 SNP。整个面板的基因分型错误率为 0.002,个体之间的身份概率足够低,可以高度自信地进行个体分离。此外,常染色体 SNP 对于群体水平分析也具有高度信息性。因此,该 SNP 面板具有许多潜在的应用,包括种群大小、性别比例、亲缘关系、繁殖成功率和种群结构的研究。理想情况下,基于 SNP 的研究可以改善当前的种群监测,并增加我们对驼鹿种群动态的了解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae61/5976195/7527b693fc55/pone.0197364.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验