Suppr超能文献

静息清醒状态下观察到的人类下丘脑的睡眠和觉醒促进区域的连通性。

Connectivity of sleep- and wake-promoting regions of the human hypothalamus observed during resting wakefulness.

机构信息

Department of Pediatrics, Iowa Neuroimaging and Noninvasive Brain Stimulation Program, University of Iowa Hospitals and Clinics, Iowa City, IA.

Department of Neurology, Iowa Neuroimaging and Noninvasive Brain Stimulation Program, University of Iowa Hospitals and Clinics, Iowa City, IA.

出版信息

Sleep. 2018 Sep 1;41(9). doi: 10.1093/sleep/zsy108.

Abstract

The hypothalamus is a central hub for regulating sleep-wake patterns, the circuitry of which has been investigated extensively in experimental animals. This work has identified a wake-promoting region in the posterior hypothalamus, with connections to other wake-promoting regions, and a sleep-promoting region in the anterior hypothalamus, with inhibitory projections to the posterior hypothalamus. It is unclear whether a similar organization exists in humans. Here, we use anatomical landmarks to identify homologous sleep- and wake-promoting regions of the human hypothalamus and investigate their functional relationships using resting-state functional connectivity magnetic resonance imaging in healthy awake participants. First, we identify a negative correlation (anticorrelation) between the anterior and posterior hypothalamus, two regions with opposing roles in sleep-wake regulation. Next, we show that hypothalamic connectivity predicts a pattern of regional sleep-wake changes previously observed in humans. Specifically, regions that are more positively correlated with the posterior hypothalamus and more negatively correlated with the anterior hypothalamus correspond to regions with the greatest change in cerebral blood flow between sleep-wake states. Taken together, these findings provide preliminary evidence relating a hypothalamic circuit investigated in animals to sleep-wake neuroimaging results in humans, with implications for our understanding of human sleep-wake regulation and the functional significance of anticorrelations.

摘要

下丘脑是调节睡眠-觉醒模式的中枢枢纽,其回路在实验动物中得到了广泛研究。这项工作确定了下丘脑后部的一个促进觉醒的区域,它与其他促进觉醒的区域有联系,以及下丘脑前部的一个促进睡眠的区域,它对下丘脑后部有抑制性投射。目前尚不清楚在人类中是否存在类似的组织。在这里,我们使用解剖学标志来识别人类下丘脑的同源性睡眠和觉醒促进区域,并使用健康清醒参与者的静息状态功能连接磁共振成像来研究它们的功能关系。首先,我们发现下丘脑的前后两个区域之间存在负相关(反相关),这两个区域在睡眠-觉醒调节中起着相反的作用。接下来,我们表明,下丘脑的连接性可以预测以前在人类中观察到的区域睡眠-觉醒变化的模式。具体来说,与下丘脑后部相关性更高、与下丘脑前部相关性更低的区域,与睡眠-觉醒状态之间脑血流变化最大的区域相对应。总之,这些发现提供了初步证据,将动物中研究的下丘脑回路与人类的睡眠-觉醒神经影像学结果联系起来,这对我们理解人类的睡眠-觉醒调节以及反相关的功能意义具有重要意义。

相似文献

2
Functional connectivity of the human hypothalamus during wakefulness and nonrapid eye movement sleep.
Hum Brain Mapp. 2021 Aug 1;42(11):3667-3679. doi: 10.1002/hbm.25461. Epub 2021 May 7.
3
Morning resting hypothalamus-dorsal striatum connectivity predicts individual differences in diurnal sleepiness accumulation.
Neuroimage. 2024 Oct 1;299:120833. doi: 10.1016/j.neuroimage.2024.120833. Epub 2024 Sep 3.
4
The sleep switch: hypothalamic control of sleep and wakefulness.
Trends Neurosci. 2001 Dec;24(12):726-31. doi: 10.1016/s0166-2236(00)02002-6.
5
Functional connectivity dynamics slow with descent from wakefulness to sleep.
PLoS One. 2019 Dec 2;14(12):e0224669. doi: 10.1371/journal.pone.0224669. eCollection 2019.
6
The role of co-neurotransmitters in sleep and wake regulation.
Mol Psychiatry. 2019 Sep;24(9):1284-1295. doi: 10.1038/s41380-018-0291-2. Epub 2018 Oct 30.
8
The interrelationship of body mass index with gray matter volume and resting-state functional connectivity of the hypothalamus.
Int J Obes (Lond). 2020 May;44(5):1097-1107. doi: 10.1038/s41366-019-0496-8. Epub 2019 Dec 3.
10
Effects of hunger, satiety and oral glucose on effective connectivity between hypothalamus and insular cortex.
Neuroimage. 2020 Aug 15;217:116931. doi: 10.1016/j.neuroimage.2020.116931. Epub 2020 May 14.

引用本文的文献

1
A whole-brain male mouse atlas of long-range inputs to histaminergic neurons.
Nat Commun. 2025 Aug 29;16(1):8092. doi: 10.1038/s41467-025-63394-2.
2
Associations between T-cell traits and narcolepsy type 1: new insights from a Mendelian randomization study.
Front Neurol. 2024 Oct 31;15:1444753. doi: 10.3389/fneur.2024.1444753. eCollection 2024.
4
Deficient sleep, altered hypothalamic functional connectivity, depression and anxiety in cigarette smokers.
Neuroimage Rep. 2024 Mar;4(1). doi: 10.1016/j.ynirp.2024.100200. Epub 2024 Mar 5.
7
Localization of a Medial Temporal Lobe-Precuneus Network for Time Orientation.
Ann Neurol. 2023 Sep;94(3):421-433. doi: 10.1002/ana.26681. Epub 2023 May 26.
9
Abnormal functional connectivity of the posterior hypothalamus and other arousal regions in surgical temporal lobe epilepsy.
J Neurosurg. 2023 Feb 17;139(3):640-650. doi: 10.3171/2023.1.JNS221452. Print 2023 Sep 1.

本文引用的文献

1
Supramammillary glutamate neurons are a key node of the arousal system.
Nat Commun. 2017 Nov 10;8(1):1405. doi: 10.1038/s41467-017-01004-6.
2
Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals.
Neuroimage. 2017 Jul 1;154:59-80. doi: 10.1016/j.neuroimage.2017.03.033. Epub 2017 Mar 29.
3
Towards a consensus regarding global signal regression for resting state functional connectivity MRI.
Neuroimage. 2017 Jul 1;154:169-173. doi: 10.1016/j.neuroimage.2016.11.052. Epub 2016 Nov 22.
4
A human brain network derived from coma-causing brainstem lesions.
Neurology. 2016 Dec 6;87(23):2427-2434. doi: 10.1212/WNL.0000000000003404. Epub 2016 Nov 4.
5
Network localization of hemichorea-hemiballismus.
Neurology. 2016 Jun 7;86(23):2187-95. doi: 10.1212/WNL.0000000000002741. Epub 2016 May 11.
6
Task-free MRI predicts individual differences in brain activity during task performance.
Science. 2016 Apr 8;352(6282):216-20. doi: 10.1126/science.aad8127. Epub 2016 Apr 7.
7
Cingulo-opercular network activity maintains alertness.
Neuroimage. 2016 Mar;128:264-272. doi: 10.1016/j.neuroimage.2016.01.026. Epub 2016 Jan 19.
8
Differential effects of hunger and satiety on insular cortex and hypothalamic functional connectivity.
Eur J Neurosci. 2016 May;43(9):1181-9. doi: 10.1111/ejn.13182. Epub 2016 Feb 20.
9
Basal forebrain control of wakefulness and cortical rhythms.
Nat Commun. 2015 Nov 3;6:8744. doi: 10.1038/ncomms9744.
10
Basal forebrain circuit for sleep-wake control.
Nat Neurosci. 2015 Nov;18(11):1641-7. doi: 10.1038/nn.4143. Epub 2015 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验