Suppr超能文献

监测哺乳动物细胞中的线粒体动态。

Monitoring the Mitochondrial Dynamics in Mammalian Cells.

作者信息

Simula Luca, Campello Silvia

机构信息

Department of Biology, University of Rome Tor Vergata, Rome, Italy.

Department of Pediatric Hematology and Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.

出版信息

Methods Mol Biol. 2018;1782:267-285. doi: 10.1007/978-1-4939-7831-1_15.

Abstract

Mitochondria exist in a dynamic state inside mammalian cells. They undergo processes of fusion and fission to adjust their shape according to the different cell needs. Different proteins tightly regulate these dynamics: Opa-1 and Mitofusin-1 and Mitofusin-2 are the main profusion proteins, while Drp1 and its different receptors (Mff, Fis1, MiD49, MiD51) regulate mitochondrial fission. The dynamic nature of the mitochondrial network has become evident and detectable, thanks to recent advances in live imaging video microscopy and to the availability of mitochondria-tagged fluorescent proteins. High-resolution confocal reconstruction of mitochondria over time allows researchers to visualize mitochondria shape changes in living cells, under different experimental conditions. Moreover, in recent years, different techniques in living cells have been developed to study the process of mitochondria fusion in more details. Among them are fluorescence recovery after photobleaching (FRAP) of mitochondria-tagged GFP (mtGFP), use of photoactivatable mtGFP, polyethylene glycol (PEG)-based fusion of mtGFP and mtRFP cells, and Renilla luciferase assay (for population studies). In addition, in combination with imaging, the analysis of the expression levels of the different mitochondria-shaping proteins, along with that of their activation status, represents a powerful tool to investigate potential modulations of the mitochondrial network. Here, we review this aspect and then mention a number of techniques, with particular attention to their relative protocols.

摘要

线粒体在哺乳动物细胞内处于动态状态。它们经历融合和裂变过程,以根据不同的细胞需求调整自身形状。不同的蛋白质严格调控这些动态过程:视神经萎缩蛋白1(Opa-1)、线粒体融合蛋白1(Mitofusin-1)和线粒体融合蛋白2(Mitofusin-2)是主要的融合蛋白,而动力相关蛋白1(Drp1)及其不同受体(线粒体裂变因子(Mff)、线粒体分裂蛋白1(Fis1)、线粒体分裂蛋白49(MiD49)、线粒体分裂蛋白51(MiD51))则调节线粒体裂变。由于实时成像视频显微镜技术的最新进展以及线粒体标记荧光蛋白的可用性,线粒体网络的动态特性已变得明显且可检测。随着时间的推移,对线粒体进行高分辨率共聚焦重建使研究人员能够在不同实验条件下观察活细胞中线粒体的形状变化。此外,近年来,已开发出不同的活细胞技术来更详细地研究线粒体融合过程。其中包括线粒体标记绿色荧光蛋白(mtGFP)的光漂白后荧光恢复(FRAP)、光激活mtGFP的应用、基于聚乙二醇(PEG)的mtGFP和线粒体标记红色荧光蛋白(mtRFP)细胞的融合以及海肾荧光素酶测定(用于群体研究)。此外,结合成像分析不同线粒体塑形蛋白的表达水平及其激活状态,是研究线粒体网络潜在调节作用的有力工具。在此,我们综述这一方面,然后提及一些技术,并特别关注它们的相关实验方案。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验