Soman Smijin K, Woodruff Micah R J, Dagda Ruben K
Department of Pharmacology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA.
Aging Dis. 2025 Apr 28;16(5):2695-2720. doi: 10.14336/AD.2025.0440.
Mitochondria are dynamic organelles vital for neuronal function due to their ability to generate ATP, sequester cytosolic calcium (Ca), regulate lipid metabolism, and modulate apoptosis signaling. In order to maintain these essential functions in healthy neurons, mitochondria must be continuously replenished through mitochondrial turnover and biogenesis. Conversely, the dysregulation of mitochondrial homeostasis can lead to oxidative stress and contribute to the neuropathology of Parkinson's disease (PD). This review will provide an updated in-depth review of mitochondrial processes such as mitophagy, biogenesis, trafficking, oxidative phosphorylation, Ca sequestration, mitochondrial transfer, and their relevance to PD pathophysiology. We provide an extensive overview of the neuroprotective molecular signaling pathways regulated by PD-associated proteins that converge at the mitochondrion. Importantly, in this review we highlight aspects of mitochondrial pathology that converge across multiple models including iPSCs, patient-derived fibroblasts, cell culture models, rodent models and chemical and genetic models of PD. Finally, we provide a comprehensive update on the molecular toolbox used to interrogate these signaling pathways using in vitro and in vivo models of PD and provide insight into the downstream protein targets that can be leveraged to develop novel therapies against PD.
线粒体是对神经元功能至关重要的动态细胞器,因为它们能够产生三磷酸腺苷(ATP)、隔离胞质钙(Ca)、调节脂质代谢并调节凋亡信号传导。为了在健康神经元中维持这些基本功能,线粒体必须通过线粒体更新和生物发生不断补充。相反,线粒体稳态的失调会导致氧化应激,并促成帕金森病(PD)的神经病理学。本综述将对线粒体自噬、生物发生、运输、氧化磷酸化、Ca隔离、线粒体转移等线粒体过程及其与PD病理生理学的相关性进行最新的深入综述。我们广泛概述了由汇聚在线粒体的PD相关蛋白调节的神经保护分子信号通路。重要的是,在本综述中,我们强调了线粒体病理学在多种模型中趋同的方面,包括诱导多能干细胞(iPSC)、患者来源的成纤维细胞、细胞培养模型、啮齿动物模型以及PD的化学和遗传模型。最后,我们全面更新了用于利用PD的体外和体内模型探究这些信号通路的分子工具箱,并深入了解可用于开发抗PD新疗法的下游蛋白靶点。