Suppr超能文献

Fluidigm C1在单细胞RNA表达分析中的应用。

The Use of the Fluidigm C1 for RNA Expression Analyses of Single Cells.

作者信息

DeLaughter Daniel M

机构信息

Harvard Medical School, Department of Genetics, Boston, Massachusetts.

出版信息

Curr Protoc Mol Biol. 2018 Apr;122(1):e55. doi: 10.1002/cpmb.55.

Abstract

Understanding the transcriptional heterogeneity that occurs on the level of a single cell is critical to understanding the gene-regulatory mechanisms underlying development and disease. Population-level whole-transcriptome profiling approaches average gene expression across thousands to millions of cells and are unable to delineate the transcriptional signature of individual cells. Considerable biological heterogeneity between individual cells arises from differences in cell lineage, environment, or response to stimulus. The development of single-cell RNA sequencing (RNA-seq) enabled a high-resolution and unbiased analysis of cell transcriptomes. This unit describes a procedure utilizing an automated microfluidic platform, the Fluidigm C1 system, to simultaneously isolate dozens of single cells in a size- and shape-dependent manner. The microfluidic platform processes cells in individual nanoliter-scale reactions to convert their contents into double-stranded cDNA. This cDNA is used to make dual-indexed libraries using the Illumina Nextera XT library preparation kit for eventual RNA-seq analysis. © 2018 by John Wiley & Sons, Inc.

摘要

了解单细胞水平上发生的转录异质性对于理解发育和疾病背后的基因调控机制至关重要。群体水平的全转录组分析方法会对数千到数百万个细胞的基因表达进行平均,无法描绘单个细胞的转录特征。单个细胞之间存在相当大的生物学异质性,这源于细胞谱系、环境或对刺激的反应的差异。单细胞RNA测序(RNA-seq)技术的发展使得对细胞转录组进行高分辨率且无偏差的分析成为可能。本单元描述了一种利用自动化微流控平台Fluidigm C1系统以大小和形状依赖的方式同时分离数十个单细胞的方法。该微流控平台在单个纳升级反应中处理细胞,将其内容物转化为双链cDNA。使用Illumina Nextera XT文库制备试剂盒,利用该cDNA构建双索引文库,最终用于RNA-seq分析。© 2018 John Wiley & Sons, Inc.

相似文献

1
The Use of the Fluidigm C1 for RNA Expression Analyses of Single Cells.
Curr Protoc Mol Biol. 2018 Apr;122(1):e55. doi: 10.1002/cpmb.55.
2
Single-Cell Tagged Reverse Transcription (STRT-Seq).
Methods Mol Biol. 2019;1979:133-153. doi: 10.1007/978-1-4939-9240-9_9.
4
Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.
Methods Mol Biol. 2018;1783:193-207. doi: 10.1007/978-1-4939-7834-2_10.
5
Single-Cell Library Preparation of iPSC-Derived Neural Stem Cells.
Methods Mol Biol. 2019;1919:129-143. doi: 10.1007/978-1-4939-9007-8_10.
6
Transcriptome Analysis at the Single-Cell Level Using SMART Technology.
Curr Protoc Mol Biol. 2016 Oct 10;116:4.26.1-4.26.24. doi: 10.1002/cpmb.23.
7
Microfluidic single-cell whole-transcriptome sequencing.
Proc Natl Acad Sci U S A. 2014 May 13;111(19):7048-53. doi: 10.1073/pnas.1402030111. Epub 2014 Apr 29.
8
Full-Length Single-Cell RNA Sequencing with Smart-seq2.
Methods Mol Biol. 2019;1979:25-44. doi: 10.1007/978-1-4939-9240-9_3.
9
Introduction to Single-Cell RNA Sequencing.
Curr Protoc Mol Biol. 2018 Apr;122(1):e57. doi: 10.1002/cpmb.57.
10
Single-Cell RNA Sequencing of Glioblastoma Cells.
Methods Mol Biol. 2018;1741:151-170. doi: 10.1007/978-1-4939-7659-1_12.

引用本文的文献

1
Integration of hyperspectral imaging and transcriptomics from individual cells with SpectralSeq.
Genome Res. 2025 Aug 1;35(8):1809-1820. doi: 10.1101/gr.280014.124.
3
Advancements in single-cell RNA sequencing and spatial transcriptomics: transforming biomedical research.
Acta Biochim Pol. 2025 Feb 5;72:13922. doi: 10.3389/abp.2025.13922. eCollection 2025.
4
Multiplexed multimodal single-cell technologies: From observation to perturbation analysis.
Mol Cells. 2024 Dec;47(12):100147. doi: 10.1016/j.mocell.2024.100147. Epub 2024 Nov 8.
5
Single-cell analysis in rheumatic and allergic diseases: insights for clinical practice.
Nat Rev Immunol. 2024 Nov;24(11):781-797. doi: 10.1038/s41577-024-01043-3. Epub 2024 Jun 24.
6
Cardiac Development at a Single-Cell Resolution.
Adv Exp Med Biol. 2024;1441:253-268. doi: 10.1007/978-3-031-44087-8_14.
7
New era of cancer immunology driven by big data.
Med Rev (2021). 2024 Jan 5;3(6):449-451. doi: 10.1515/mr-2023-0070. eCollection 2023 Dec.
8
The use of single-cell RNA-seq to study heterogeneity at varying levels of virus-host interactions.
PLoS Pathog. 2024 Jan 18;20(1):e1011898. doi: 10.1371/journal.ppat.1011898. eCollection 2024 Jan.
9
Computational single cell oncology: state of the art.
Front Genet. 2023 Nov 8;14:1256991. doi: 10.3389/fgene.2023.1256991. eCollection 2023.
10
Essential procedures of single-cell RNA sequencing in multiple myeloma and its translational value.
Blood Sci. 2023 Nov 2;5(4):221-236. doi: 10.1097/BS9.0000000000000172. eCollection 2023 Oct.

本文引用的文献

2
Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods.
Front Genet. 2017 May 23;8:62. doi: 10.3389/fgene.2017.00062. eCollection 2017.
3
Comparative Analysis of Single-Cell RNA Sequencing Methods.
Mol Cell. 2017 Feb 16;65(4):631-643.e4. doi: 10.1016/j.molcel.2017.01.023.
4
Massively parallel digital transcriptional profiling of single cells.
Nat Commun. 2017 Jan 16;8:14049. doi: 10.1038/ncomms14049.
5
The technology and biology of single-cell RNA sequencing.
Mol Cell. 2015 May 21;58(4):610-20. doi: 10.1016/j.molcel.2015.04.005.
6
Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.
Cell. 2015 May 21;161(5):1202-1214. doi: 10.1016/j.cell.2015.05.002.
7
Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.
Cell. 2015 May 21;161(5):1187-1201. doi: 10.1016/j.cell.2015.04.044.
9
Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types.
Science. 2014 Feb 14;343(6172):776-9. doi: 10.1126/science.1247651.
10
Quantitative single-cell RNA-seq with unique molecular identifiers.
Nat Methods. 2014 Feb;11(2):163-6. doi: 10.1038/nmeth.2772. Epub 2013 Dec 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验