Foppa Lucas, Yamamoto Keishi, Liao Wei-Chih, Comas-Vives Aleix, Copéret Christophe
Department of Chemistry and Applied Biosciences , ETH Zürich , Vladimir Prelog Weg 1-5 , CH-8093 Zürich , Switzerland.
J Phys Chem Lett. 2018 Jun 21;9(12):3348-3353. doi: 10.1021/acs.jpclett.8b01332. Epub 2018 Jun 7.
Ru nanoparticles are highly active catalysts for the Fischer-Tropsch and the Haber-Bosch processes. They show various types of surface sites upon CO adsorption according to NMR spectroscopy. Compared to terminal and bridging η adsorption modes on terraces or edges, little is known about side-on η CO species coordinated to B or B step-edges, the proposed active sites for CO and N cleavage. By using solid-state NMR and DFT calculations, we analyze C chemical shift tensors (CSTs) of carbonyl ligands on the molecular cluster model for Ru nanoparticles, Ru(η-μ-CO)(CO)(η-CMe), and show that, contrary to η carbonyls, the CST principal components parallel to the C-O bond are extremely deshielded in the η species due to the population of the C-O π* antibonding orbital, which weakens the bond prior to dissociation. The carbonyl CST is thus an indicator of the reactivity of both Ru clusters and Ru nanoparticles step-edge sites toward C-O bond cleavage.
钌纳米颗粒是费托合成和哈伯-博施法过程中高活性的催化剂。根据核磁共振光谱,它们在一氧化碳吸附时表现出各种类型的表面位点。与台地或边缘上的端基和桥连η吸附模式相比,关于与B或B台阶边缘配位的侧基η一氧化碳物种(提议的一氧化碳和氮裂解活性位点)的了解较少。通过使用固态核磁共振和密度泛函理论计算,我们分析了钌纳米颗粒的分子簇模型Ru(η-μ-CO)(CO)(η-CMe)上羰基配体的碳化学位移张量(CST),结果表明,与η羰基相反,由于C-O π*反键轨道的填充,η物种中与C-O键平行的CST主成分极度去屏蔽,这在解离前削弱了键。因此,羰基CST是钌簇和钌纳米颗粒台阶边缘位点对C-O键裂解反应活性的一个指标。