Suppr超能文献

一种基于新构建的二分网络预测疾病与长链非编码RNA-微小RNA对之间关联的新模型。

A Novel Model for Predicting Associations between Diseases and LncRNA-miRNA Pairs Based on a Newly Constructed Bipartite Network.

作者信息

Zhou Shunxian, Xuan Zhanwei, Wang Lei, Ping Pengyao, Pei Tingrui

机构信息

College of Software and Communication Engineering, Xiangnan University, Chenzhou 423000, China.

College of Information Engineering, Xiangtan University, Xiangtan 411105, China.

出版信息

Comput Math Methods Med. 2018 May 6;2018:6789089. doi: 10.1155/2018/6789089. eCollection 2018.

Abstract

MOTIVATION

Increasing studies have demonstrated that many human complex diseases are associated with not only microRNAs, but also long-noncoding RNAs (lncRNAs). LncRNAs and microRNA play significant roles in various biological processes. Therefore, developing effective computational models for predicting novel associations between diseases and lncRNA-miRNA pairs (LMPairs) will be beneficial to not only the understanding of disease mechanisms at lncRNA-miRNA level and the detection of disease biomarkers for disease diagnosis, treatment, prognosis, and prevention, but also the understanding of interactions between diseases and LMPairs at disease level.

RESULTS

It is well known that genes with similar functions are often associated with similar diseases. In this article, a novel model named PADLMP for predicting associations between diseases and LMPairs is proposed. In this model, a Disease-LncRNA-miRNA (DLM) tripartite network was designed firstly by integrating the lncRNA-disease association network and miRNA-disease association network; then we constructed the disease-LMPairs bipartite association network based on the DLM network and lncRNA-miRNA association network; finally, we predicted potential associations between diseases and LMPairs based on the newly constructed disease-LMPair network. Simulation results show that PADLMP can achieve AUCs of 0.9318, 0.9090 ± 0.0264, and 0.8950 ± 0.0027 in the LOOCV, 2-fold, and 5-fold cross validation framework, respectively, which demonstrate the reliable prediction performance of PADLMP.

摘要

动机

越来越多的研究表明,许多人类复杂疾病不仅与微小RNA有关,还与长链非编码RNA(lncRNA)有关。lncRNA和微小RNA在各种生物学过程中发挥着重要作用。因此,开发有效的计算模型来预测疾病与lncRNA-微小RNA对(LMPairs)之间的新关联,不仅有助于在lncRNA-微小RNA水平上理解疾病机制以及检测用于疾病诊断、治疗、预后和预防的疾病生物标志物,还有助于在疾病层面理解疾病与LMPairs之间的相互作用。

结果

众所周知,功能相似的基因通常与相似的疾病相关。在本文中,提出了一种名为PADLMP的用于预测疾病与LMPairs之间关联的新模型。在该模型中,首先通过整合lncRNA-疾病关联网络和微小RNA-疾病关联网络设计了一个疾病-lncRNA-微小RNA(DLM)三方网络;然后基于DLM网络和lncRNA-微小RNA关联网络构建了疾病-LMPairs二分关联网络;最后,基于新构建的疾病-LMPair网络预测疾病与LMPairs之间的潜在关联。模拟结果表明,在留一法交叉验证、二倍交叉验证和五倍交叉验证框架下,PADLMP分别可以达到0.9318、0.9090±0.0264和0.8950±0.0027的AUC值,这证明了PADLMP具有可靠的预测性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8c8/5960578/6e257780f609/CMMM2018-6789089.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验