Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720-3220, USA.
California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, CA 94720-3220, USA.
Sci Adv. 2018 May 30;4(5):eaas9098. doi: 10.1126/sciadv.aas9098. eCollection 2018 May.
Precise protein folding is essential for the survival of all cells, and protein misfolding causes a number of diseases that lack effective therapies, yet the general principles governing protein folding in the cell remain poorly understood. In vivo, folding can begin cotranslationally and protein quality control at the ribosome is essential for cellular proteostasis. We directly characterize and compare the refolding and cotranslational folding trajectories of the protein HaloTag. We introduce new techniques for both measuring folding kinetics and detecting the conformations of partially folded intermediates during translation in real time. We find that, although translation does not affect the rate-limiting step of HaloTag folding, a key aggregation-prone intermediate observed during in vitro refolding experiments is no longer detectable. This rerouting of the folding pathway increases HaloTag's folding efficiency and may serve as a general chaperone-independent mechanism of quality control by the ribosome.
精确的蛋白质折叠对于所有细胞的生存都是至关重要的,而蛋白质错误折叠会导致许多缺乏有效治疗方法的疾病,但细胞内控制蛋白质折叠的一般原则仍知之甚少。在体内,折叠可以共翻译起始,核糖体上的蛋白质质量控制对于细胞内的蛋白质平衡至关重要。我们直接描述和比较了 HaloTag 蛋白的重折叠和共翻译折叠轨迹。我们引入了新的技术来实时测量折叠动力学,并检测翻译过程中部分折叠中间产物的构象。我们发现,尽管翻译不会影响 HaloTag 折叠的限速步骤,但在体外重折叠实验中观察到的一个关键的易于聚集的中间产物不再可检测到。这种折叠途径的重路由增加了 HaloTag 的折叠效率,并且可能作为核糖体独立的质量控制的一般伴侣机制。