Ruf Alexander, d'Hendecourt Louis L S, Schmitt-Kopplin Philippe
Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764 Neuherberg, Germany.
Analytical Food Chemistry, Technische Universität München, Maximus-von-Imhof-Forum 2, 85354 Freising, Germany.
Life (Basel). 2018 Jun 1;8(2):18. doi: 10.3390/life8020018.
Astrochemistry, meteoritics and chemical analytics represent a manifold scientific field, including various disciplines. In this review, clarifications on astrochemistry, comet chemistry, laboratory astrophysics and meteoritic research with respect to organic and metalorganic chemistry will be given. The seemingly large number of observed astrochemical molecules necessarily requires explanations on molecular complexity and chemical evolution, which will be discussed. Special emphasis should be placed on data-driven analytical methods including ultrahigh-resolving instruments and their interplay with quantum chemical computations. These methods enable remarkable insights into the complex chemical spaces that exist in meteorites and maximize the level of information on the huge astrochemical molecular diversity. In addition, they allow one to study even yet undescribed chemistry as the one involving organomagnesium compounds in meteorites. Both targeted and non-targeted analytical strategies will be explained and may touch upon epistemological problems. In addition, implications of (metal)organic matter toward prebiotic chemistry leading to the emergence of life will be discussed. The precise description of astrochemical organic and metalorganic matter as seeds for life and their interactions within various astrophysical environments may appear essential to further study questions regarding the emergence of life on a most fundamental level that is within the molecular world and its self-organization properties.
天体化学、陨石学和化学分析构成了一个多领域的科学范畴,涵盖了各种学科。在本综述中,将对天体化学、彗星化学、实验室天体物理学以及陨石研究中与有机化学和金属有机化学相关的内容进行阐释。大量观测到的天体化学分子必然需要对分子复杂性和化学演化作出解释,对此将展开讨论。应特别强调数据驱动的分析方法,包括超高分辨率仪器及其与量子化学计算的相互作用。这些方法能够让我们对陨石中存在的复杂化学空间有显著的洞察,并使关于巨大的天体化学分子多样性的信息水平最大化。此外,它们还能让人们研究尚未被描述的化学过程,比如陨石中涉及有机镁化合物的化学过程。将对靶向和非靶向分析策略进行解释,这可能会涉及到认识论问题。此外,还将讨论(金属)有机物对导致生命出现的益生元化学的影响。将天体化学有机物质和金属有机物质精确描述为生命的种子,以及它们在各种天体物理环境中的相互作用,对于在分子世界及其自组织特性这一最基本层面上进一步研究生命起源问题似乎至关重要。