Suppr超能文献

虚拟源合成孔径波束形成与基于元素模型的比较。

Comparison of virtual source synthetic aperture beamforming with an element-based model.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.

出版信息

J Acoust Soc Am. 2018 May;143(5):2801. doi: 10.1121/1.5036733.

Abstract

Ultrasound beamforming relies on models of propagation to convert samples of the backscattered field through time into spatial image samples. The most common model is straight-line propagation of a focused wave, assuming a narrow steered and focused beam that propagates along a selected direction. The reconstructed image suffers from defocusing, reduced signal-to-noise ratio (SNR), and contrast loss away from the focus. "Virtual source" methods coherently combine the recorded data from multiple transmissions to form a synthetic transmit focus by making geometric assumptions about the transmissions. These also include diverging waves (virtual source behind the array) and plane waves (virtual source at infinity). Retrospective encoding for conventional ultrasound sequences (REFoCUS) beamforming has been proposed to instead model transmission as the superposition of the responses of individual transmit elements on the transducer array and to efficiently estimate the "complete data set"-individual element transmit and receive responses. In addition to isolating individual element contributions, the result of this unifying framework is a high-SNR, two-way focused image from focused plane wave or diverging transmissions. No significant differences were observed for either SNR or image quality measured by contrast-to-noise ratio between the appropriate virtual source method and REFoCUS beamforming in simulation and experimental imaging.

摘要

超声束形成依赖于传播模型,将反向散射场的样本通过时间转换为空间图像样本。最常见的模型是聚焦波的直线传播,假设窄的定向和聚焦波束沿着选定的方向传播。重建图像会出现散焦、信号噪声比(SNR)降低以及远离焦点的对比度损失。“虚拟源”方法通过对传输进行几何假设,相干地组合来自多个传输的记录数据,通过对传输进行几何假设,形成合成发射焦点。这些假设还包括发散波(阵列后面的虚拟源)和平行波(无穷远处的虚拟源)。已经提出了用于常规超声序列的回溯编码(REFoCUS)波束形成,以将传输建模为换能器阵列上各个发射元件响应的叠加,并有效地估计“完整数据集”-各个元件的发射和接收响应。除了隔离单个元件的贡献之外,该统一框架的结果是来自聚焦平面波或发散传输的高 SNR、双向聚焦图像。在模拟和实验成像中,通过对比噪声比测量,适当的虚拟源方法和 REFoCUS 波束形成在 SNR 或图像质量方面没有观察到显著差异。

相似文献

1
Comparison of virtual source synthetic aperture beamforming with an element-based model.
J Acoust Soc Am. 2018 May;143(5):2801. doi: 10.1121/1.5036733.
2
Fourier-based Synthetic-aperture Imaging for Arbitrary Transmissions by Cross-correlation of Transmitted and Received Wave-fields.
Ultrason Imaging. 2021 Sep;43(5):282-294. doi: 10.1177/01617346211026350. Epub 2021 Jul 8.
4
Recovery of the Complete Data Set From Focused Transmit Beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):30-38. doi: 10.1109/TUFFC.2017.2773495.
5
F-k Domain Imaging for Synthetic Aperture Sequential Beamforming.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Jan;63(1):60-71. doi: 10.1109/TUFFC.2015.2499839. Epub 2015 Nov 11.
6
Impact of element pitch on synthetic aperture ultrasound imaging.
J Med Ultrason (2001). 2016 Jul;43(3):317-25. doi: 10.1007/s10396-016-0700-6. Epub 2016 Feb 20.
7
Converting Coherence to Signal-to-noise Ratio for Enhancement of Adaptive Ultrasound Imaging.
Ultrason Imaging. 2020 Jan;42(1):27-40. doi: 10.1177/0161734619889384. Epub 2019 Dec 5.
8
Dynamic Transmit-Receive Beamforming by Spatial Matched Filtering for Ultrasound Imaging with Plane Wave Transmission.
Ultrason Imaging. 2017 Jul;39(4):207-223. doi: 10.1177/0161734617692017. Epub 2017 Mar 1.
10
Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1166-1177. doi: 10.1109/TUFFC.2020.2966116. Epub 2020 Jan 13.

引用本文的文献

1
Improved Spatiotemporal Resolution in Echocardiography Using Mixed Geometry Imaging Sequences.
IEEE Trans Ultrason Ferroelectr Freq Control. 2024 Apr;71(4):438-447. doi: 10.1109/TUFFC.2024.3364051. Epub 2024 Mar 28.
2
Pixel-Oriented Adaptive Apodization for Plane-Wave Imaging Based on Recovery of the Complete Dataset.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Feb;69(2):512-522. doi: 10.1109/TUFFC.2021.3124821. Epub 2022 Jan 27.
3
Fourier-based Synthetic-aperture Imaging for Arbitrary Transmissions by Cross-correlation of Transmitted and Received Wave-fields.
Ultrason Imaging. 2021 Sep;43(5):282-294. doi: 10.1177/01617346211026350. Epub 2021 Jul 8.
4
Resolution and Speckle Reduction in Cardiac Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Apr;68(4):1131-1143. doi: 10.1109/TUFFC.2020.3034518. Epub 2021 Mar 26.
5
Synthetic Aperture Focusing for Multi-Covariate Imaging of Sub-Resolution Targets.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Jun;67(6):1166-1177. doi: 10.1109/TUFFC.2020.2966116. Epub 2020 Jan 13.
6
Extending Retrospective Encoding for Robust Recovery of the Multistatic Data Set.
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 May;67(5):943-956. doi: 10.1109/TUFFC.2019.2961875. Epub 2019 Dec 23.

本文引用的文献

1
Recovery of the Complete Data Set From Focused Transmit Beams.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):30-38. doi: 10.1109/TUFFC.2017.2773495.
2
Pseudoinverse Decoding Process in Delay-Encoded Synthetic Transmit Aperture Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Sep;63(9):1372-1379. doi: 10.1109/TUFFC.2016.2578952. Epub 2016 Jun 9.
3
High-Resolution Ultrasound Imaging With Unified Pixel-Based Beamforming.
IEEE Trans Med Imaging. 2016 Jan;35(1):98-108. doi: 10.1109/TMI.2015.2456982.
4
The angular apodization in coherent plane-wave compounding.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Nov;62(11):2018-23. doi: 10.1109/TUFFC.2015.007183.
5
Delay-encoded transmission and image reconstruction method in synthetic transmit aperture imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Oct;62(10):1745-56. doi: 10.1109/TUFFC.2015.007005.
6
Tissue harmonic synthetic aperture ultrasound imaging.
J Acoust Soc Am. 2014 Oct;136(4):2050-6. doi: 10.1121/1.4893902.
7
Ultrafast imaging in biomedical ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2014 Jan;61(1):102-19. doi: 10.1109/TUFFC.2014.6689779.
8
Synthetic aperture imaging in breast ultrasound: a preliminary clinical study.
Acad Radiol. 2012 Aug;19(8):923-9. doi: 10.1016/j.acra.2012.04.005. Epub 2012 May 24.
9
Real-time volume imaging using a crossed electrode array.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Jun;56(6):1252-61. doi: 10.1109/TUFFC.2009.1167.
10
Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography.
IEEE Trans Ultrason Ferroelectr Freq Control. 2009 Mar;56(3):489-506. doi: 10.1109/TUFFC.2009.1067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验